skip to main content


Title: Effects of demand-side restrictions on high-deforestation palm oil in Europe on deforestation and emissions in Indonesia
Abstract

Demand-side restrictions on high-deforestation commodities are expanding as a climate policy, but their impact on reducing tropical deforestation and emissions has yet to be quantified. Here we model the effects of demand-side restrictions on high-deforestation palm oil in Europe on deforestation and emissions in Indonesia. We do so by integrating a model of global trade with a spatially explicit model of land-use change in Indonesia. We estimate a European ban on high-deforestation palm oil from 2000 to 2015 would have led to a 8.9% global price premium on low-deforestation palm oil, resulting in 21 374 ha yr−1(1.60%) less deforestation and 21.1 million tCO2yr−1(1.91%) less emissions from deforestation in Indonesia relative to what occurred. A hypothetical Indonesia-wide carbon price would have achieved equivalent emission reductions at $0.81/tCO2. Impacts of a ban are small because: 52% of Europe’s imports of high-deforestation palm oil would have shifted to non-participating countries; the price elasticity of supply of high-deforestation oil palm cropland is small (0.13); and conversion to oil palm was responsible for only 32% of deforestation in Indonesia. If demand-side restrictions succeed in substantially reducing deforestation, it is likely to be through non-price pathways.

 
more » « less
Award ID(s):
1855937 1924111 2020635
NSF-PAR ID:
10366744
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
17
Issue:
1
ISSN:
1748-9326
Page Range / eLocation ID:
Article No. 014035
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In response to growing scrutiny surrounding commodity-driven deforestation, companies have introduced zero-deforestation commitments (ZDCs) with ambitious environmental and social targets. However, such initiatives may not effectively reduce deforestation if they are not aligned with the spatial extent of remaining forests at risk. They may also fail to avert socio-economic risks if ZDCs do not consider smallholder farmers’ needs. We assess the spatial and functional fit of ZDCs by mapping commodity-driven deforestation and socio-economic risks, and comparing them to the spatial coverage and implementation of ZDCs in the Indonesian palm oil sector. Our study finds that companies’ ZDCs often underperform in four areas: traceability, compliance support for high-risk palm oil mills, transparency, and smallholder inclusion. In 2020, only one-third of companies sourcing from their own mills, and just 6% of those sourcing from external suppliers, achieved full traceability to plantations. Comparing the reach of ZDCs adopted by downstream buyers with those adopted by mill owners located further upstream, we find that high-quality ZDCs from buyers covered 62% of forests at risk, while mill owners’ ZDCs only covered 23% of forests at risk within the mill supply base. In Kalimantan and Papua, the current and future deforestation frontiers, the forests most at risk of conversion were predominantly covered by weak ZDCs lacking in policy comprehensiveness and implementation. Additionally, we find that only 46% of independent smallholder oil palm plots are in mill supply sheds whose owners offer programs and support for independent smallholders, indicating that smallholder inclusion is a significant challenge for ZDC companies. These results highlight the lack of spatial and functional alignment between supply chain policies and their local context as a significant gap in ZDC implementation and a challenge that the EU Deforestation Regulation will face.

     
    more » « less
  2. With deforestation and associated fires ongoing at high rates, and amidst urgent need to preserve Amazonia, improving the understanding of biomass burning emissions drivers is essential. The use of orbital remote sensing data enables the estimate of both biomass burning emissions and deforestation. In this study, we have estimated emissions of particulate matter with diameter less than 2.5 µm (PM2.5) associated with biomass burning, a primary human health risk, using the Brazilian Biomass Burning emission model with Fire Radiative Power (3BEM_FRP), and estimated deforestation based on the MapBiomas dataset. Using these estimates, we have assessed for the first time how deforestation drove biomass burning emissions in Amazonia over the last two decades at three scales of analysis: Amazonia-wide, country/state and pixel. Amazonia accounted for 48% of PM2.5 emitted from biomass burning in South America and current deforestation rates have reached values on par with those of the early 21st Century. Emissions and deforestation were concentrated in the Eastern and Central-Southern portions of Amazonia. Amazonia-wide deforestation and emissions were linked through time (R = 0.65). Countries/states with the widest spread agriculture were less likely to be correlated at this scale, likely because of the importance of biomass burning in agricultural practices. Concentrated in regions of ongoing deforestation, in 18% of Amazonia grid cells PM2.5 emissions associated with biomass burning and deforestation were significantly positively correlated. Deforestation is an important driver of emissions in Amazonia but does not explain biomass burning alone. Therefore, future work must link climate and other non-deforestation drivers to completely understand biomass burning emissions in Amazonia. The advance of anthropogenic activities over forested areas, which ultimately leads to more fires and deforestation, is expected to continue, worsening a crisis of dangerous emissions. 
    more » « less
  3. Abstract

    Climate change has been projected to increase the intensity and magnitude of extreme temperature in Indonesia. Solar radiation management (SRM) has been proposed as a strategy to temporarily combat global warming, buying time for negative emissions. Although the global impacts of SRM have been extensively studied in recent years, regional impacts, especially in the tropics, have received much less attention. This article investigates the potential stratospheric sulphate aerosol injection (SAI) to modify mean and extreme temperature, as well as the relative humidity and wet bulb temperature (WBT) change over Indonesian Maritime Continent (IMC) based on simulations from three different earth system models. We applied a simple downscaling method and corrected the bias of model output to reproduce historical temperatures and relative humidity over IMC. We evaluated changes in geoengineering model intercomparison project (GeoMIP) experiment G4, an SAI experiment in 5 Tg of SO2into the equatorial lower stratosphere between 2020 and 2069, concurrent with the RCP4.5 emissions scenario. G4 is able to significantly reduce the temperature means and extremes, and although differences in magnitude of response and spatial pattern occur, there is a generally consistent response. The spatial response of changes forced by RCP4.5 scenario and G4 are notably heterogeneous in the archipelago, highlighting uncertainties that would be critical in assessing socio‐economic consequences of both doing, and not doing G4. In general, SAI has bigger impacts in reducing temperatures over land than oceans, and the southern monsoon region shows more variability. G4 is also effective at reducing the likelihood of WBT > 27°C events compared with RCP4.5 after some years of SAI deployment as well as during the post‐termination period of SAI. Regional downscaling may be an effective tool in obtaining policy‐relevant information about local effects of different future scenarios involving SAI.

     
    more » « less
  4. Abstract

    Electrification of the transportation industry is necessary; however, range anxiety has proven to be a major hindrance to individuals adopting electric vehicles (EVs). Agrivoltaic systems (AVS) can facilitate the transition to EVs by powering EV charging stations along major rural roadways, increasing their density and mitigating range anxiety. Here we conduct case study analyses of future EV power needs for Oregon, USA, and identify 174 kha of AVS viable agricultural land outside urban boundaries that is south facing and does not have prohibitive attributes (designated wetland, forested land, or otherwise protected lands). 86% highway access points have sufficient available land to supply EV charging stations with AVS. These AVS installations would occupy less than 3% (5 kha) of the identified available land area. Installing EV charging stations at these 86% highway access points would yield 231 EV charging stations with a median range of 5.9 km (3.6 mi), a distance comparable to driver expectations, suggesting that this approach would serve to mitigate range anxiety. AVS powered rural charging stations in Oregon could support the equivalent of 673,915 electric vehicles yr−1, reducing carbon emissions due to vehicle use in OR by 3.1 mil MTCO2yr−1, or 21%.

     
    more » « less
  5. null (Ed.)
    Antimicrobial resistance is a threat to global health, aggravated by the use of antimicrobials in livestock production. Mitigating the growing economic costs related to antimicrobial use in livestock production requires strong global coordination, and to that end policy makers can leverage global and national food animal trade policies, such as bans and user fees. Evaluation of such policies requires representing the interactions between competing producers in the global meat market, which is usually out of the scope of statistical models. For that, we developed a game-theoretic food system model of global livestock production and trade between 18 countries and aggregate world regions. The model comprises the largest producing and consuming countries, the explicit interconnections between countries, and the use of antimicrobials in food animal production. Our model allows us to provide policy insights beyond standard literature and assess the trade-off between trade, cost of a policy, and antimicrobials-induced productivity. We studied three scenarios: global increased user fees on antimicrobials, a global ban of meat imports from Brazil, and a decrease in China's meat consumption. We found that a user fee that increases the price of antimicrobials by 50% globally leads to a 33% reduction in global antimicrobial use. However, participation of developing and emerging countries in the coordination scheme is jeopardized, since they become less competitive for meat sales compared to developed countries. When meat imports from Brazil are banned globally, importers of Brazil's meat would turn primarily to the U.S. to supplement their demand. Lastly, meeting China's medium-term lower meat consumption target would not affect global antimicrobial use, but could increase China's antimicrobial use by 11%. We highlighted the importance of trade for the outcome of a policy and concluded that global cooperation is required to align the incentives of all countries toward tackling antimicrobial resistance. 
    more » « less