skip to main content


Title: Bayesian Topology Learning and noise removal from network data
Abstract Learning the topology of a graph from available data is of great interest in many emerging applications. Some examples are social networks, internet of things networks (intelligent IoT and industrial IoT), biological connection networks, sensor networks and traffic network patterns. In this paper, a graph topology inference approach is proposed to learn the underlying graph structure from a given set of noisy multi-variate observations, which are modeled as graph signals generated from a Gaussian Markov Random Field (GMRF) process. A factor analysis model is applied to represent the graph signals in a latent space where the basis is related to the underlying graph structure. An optimal graph filter is also developed to recover the graph signals from noisy observations. In the final step, an optimization problem is proposed to learn the underlying graph topology from the recovered signals. Moreover, a fast algorithm employing the proximal point method has been proposed to solve the problem efficiently. Experimental results employing both synthetic and real data show the effectiveness of the proposed method in recovering the signals and inferring the underlying graph.  more » « less
Award ID(s):
1744129 1824710
NSF-PAR ID:
10276757
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Discover Internet of Things
Volume:
1
Issue:
1
ISSN:
2730-7239
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The estimation of a meaningful affinity graph has become a crucial task for representation of data, since the underlying structure is not readily available in many applications. In this paper, a topology inference framework, called Bayesian Topology Learning, is proposed to estimate the underlying graphtopologyfromagivensetofnoisymeasurementsofsignals. It is assumed that the graph signals are generated from GaussianMarkovRandomFieldprocesses. First,usingafactor analysis model, the noisy measured data is represented in a latent space and its posterior probability density function is found. Thereafter, by utilizing the minimum mean square error estimator and the Expectation Maximization (EM) procedure, a filter is proposed to recover the signal from noisy measurements and an optimization problem is formulated to estimatetheunderlyinggraphtopology. Theexperimentalresults show that the proposed method has better performance whencomparedtothecurrentstate-of-the-artalgorithmswith different performance measures. 
    more » « less
  2. Inferring graph structure from observations on the nodes is an important and popular network science task. Departing from the more common inference of a single graph, we study the problem of jointly inferring multiple graphs from the observation of signals at their nodes (graph signals), which are assumed to be stationary in the sought graphs. Graph stationarity implies that the mapping between the covariance of the signals and the sparse matrix representing the underlying graph is given by a matrix polynomial. A prominent example is that of Markov random fields, where the inverse of the covariance yields the sparse matrix of interest. From a modeling perspective, stationary graph signals can be used to model linear network processes evolving on a set of (not necessarily known) networks. Leveraging that matrix polynomials commute, a convex optimization method along with sufficient conditions that guarantee the recovery of the true graphs are provided when perfect covariance information is available. Particularly important from an empirical viewpoint, we provide high-probability bounds on the recovery error as a function of the number of signals observed and other key problem parameters. Numerical experiments demonstrate the effectiveness of the proposed method with perfect covariance information as well as its robustness in the noisy regime. 
    more » « less
  3. While node semantics have been extensively explored in social networks, little research attention has been paid to profile edge semantics, i.e., social relations. Ideal edge semantics should not only show that two users are connected, but also why they know each other and what they share in common. However, relations in social networks are often hard to profile, due to noisy multi-modal signals and limited user-generated ground-truth labels. In this work, we aim to develop a unified and principled framework that can profile user relations as edge semantics in social networks by integrating multi-modal signals in the presence of noisy and incomplete data. Our framework is also flexible towards limited or missing supervision. Specifically, we assume a latent distribution of multiple relations underlying each user link, and learn them with multi-modal graph edge variational autoencoders. We encode the network data with a graph convolutional network, and decode arbitrary signals with multiple reconstruction networks. Extensive experiments and case studies on two public DBLP author networks and two internal LinkedIn member networks demonstrate the superior effectiveness and efficiency of our proposed model. 
    more » « less
  4. We consider the problem of estimating the structure of an undirected weighted sparse graph underlying a set of signals, exploiting both smoothness of the signals as well as their statistics. We augment the objective function of Kalofolias (2016) which is motivated by a signal smoothness viewpoint and imposes a Laplacian constraint, with a penalized log-likelihood objective function with a lasso constraint, motivated from a statistical viewpoint. Both of these objective functions are designed for estimation of sparse graphs. An alternating direction method of multipliers (ADMM) algorithm is presented to optimize the augmented objective function. Numerical results based on synthetic data show that the proposed approach improves upon Kalofolias (2016) in estimating the inverse covariance, and improves upon graphical lasso in estimating the graph topology. We also implement an adaptive version of the proposed algorithm following adaptive lasso of Zou (2006), and empirically show that it leads to further improvement in performance. 
    more » « less
  5. Abstract Background

    Characterizing the topology of gene regulatory networks (GRNs) is a fundamental problem in systems biology. The advent of single cell technologies has made it possible to construct GRNs at finer resolutions than bulk and microarray datasets. However, cellular heterogeneity and sparsity of the single cell datasets render void the application of regular Gaussian assumptions for constructing GRNs. Additionally, most GRN reconstruction approaches estimate a single network for the entire data. This could cause potential loss of information when single cell datasets are generated from multiple treatment conditions/disease states.

    Results

    To better characterize single cell GRNs under different but related conditions, we propose the joint estimation of multiple networks using multiple signed graph learning (scMSGL). The proposed method is based on recently developed graph signal processing (GSP) based graph learning, where GRNs and gene expressions are modeled as signed graphs and graph signals, respectively. scMSGL learns multiple GRNs by optimizing the total variation of gene expressions with respect to GRNs while ensuring that the learned GRNs are similar to each other through regularization with respect to a learned signed consensus graph. We further kernelize scMSGL with the kernel selected to suit the structure of single cell data.

    Conclusions

    scMSGL is shown to have superior performance over existing state of the art methods in GRN recovery on simulated datasets. Furthermore, scMSGL successfully identifies well-established regulators in a mouse embryonic stem cell differentiation study and a cancer clinical study of medulloblastoma.

     
    more » « less