Graphs have emerged as one of the most important and powerful data structures to perform content analysis in many fields. In this line of work, node classification is a classic task, which is generally performed using graph neural networks (GNNs). Unfortunately, regular GNNs cannot be well generalized into the real-world application scenario when the labeled nodes are few. To address this challenge, we propose a novel few-shot node classification model that leverages pseudo-labeling with graph active learning. We first provide a theoretical analysis to argue that extra unlabeled data benefit few-shot classification. Inspired by this, our model proceeds by performing multi-level data augmentation with consistency and contrastive regularizations for better semi-supervised pseudo-labeling, and further devising graph active learning to facilitate pseudo-label selection and improve model effectiveness. Extensive experiments on four public citation networks have demonstrated that our model can effectively improve node classification accuracy with considerably few labeled data, which significantly outperforms all state-of-the-art baselines by large margins. 
                        more » 
                        « less   
                    
                            
                            Active Learning for Graphs with Noisy Structures
                        
                    
    
            Graph Neural Networks (GNNs) have seen significant success in tasks such as node classification, largely contingent upon the availability of sufficient labeled nodes. Yet, the excessive cost of labeling large-scale graphs led to a focus on active learning on graphs, which aims for effective data selection to maximize downstream model performance. Notably, most existing methods assume reliable graph topology, while real-world scenarios often present noisy graphs. Given this, designing a successful active learning framework for noisy graphs is highly needed but challenging, as selecting data for labeling and obtaining a clean graph are two tasks naturally interdependent: selecting high-quality data requires clean graph structure while cleaning noisy graph structure requires sufficient labeled data. Considering the complexity mentioned above, we propose an active learning framework, GALClean, which has been specifically designed to adopt an iterative approach for conducting both data selection and graph purification simultaneously with best information learned from the prior iteration. Importantly, we summarize GALClean as an instance of the Expectation-Maximization algorithm, which provides a theoretical understanding of its design and mechanisms. This theory naturally leads to an enhanced version, GALClean+. Extensive experiments have demonstrated the effectiveness and robustness of our proposed method across various types and levels of noisy graphs. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10544865
- Publisher / Repository:
- SIAM
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Recent years have witnessed the superior performance of heterogeneous graph neural networks (HGNNs) in dealing with heterogeneous information networks (HINs). Nonetheless, the success of HGNNs often depends on the availability of sufficient labeled training data, which can be very expensive to obtain in real scenarios. Active learning provides an effective solution to tackle the data scarcity challenge. For the vast majority of the existing work regarding active learning on graphs, they mainly focus on homogeneous graphs, and thus fall in short or even become inapplicable on HINs. In this paper, we study the active learning problem with HGNNs and propose a novel meta-reinforced active learning framework MetRA. Previous reinforced active learning algorithms train the policy network on labeled source graphs and directly transfer the policy to the target graph without any adaptation. To better exploit the information from the target graph in the adaptation phase, we propose a novel policy transfer algorithm based on meta-Q-learning termed per-step MQL. Empirical evaluations on HINs demonstrate the effectiveness of our proposed framework. The improvement over the best baseline is up to 7% in Micro-F1.more » « less
- 
            We propose GRAph Neural Diffusion with a source term (GRAND++) for graph deep learning with a limited number of labeled nodes, i.e., low-labeling rate. GRAND++ is a class of continuous-depth graph deep learning architectures whose theoretical underpinning is the diffusion process on graphs with a source term. The source term guarantees two interesting theoretical properties of GRAND++: (i) the representation of graph nodes, under the dynamics of GRAND++, will not converge to a constant vector over all nodes even as the time goes to infinity, which mitigates the over-smoothing issue of graph neural networks and enables graph learning in very deep architectures. (ii) GRAND++ can provide accurate classification even when the model is trained with a very limited number of labeled training data. We experimentally verify the above two advantages on various graph deep learning benchmark tasks, showing a significant improvement over many existing graph neural networks.more » « less
- 
            We propose GRAph Neural Diffusion with a source term (GRAND++) for graph deep learning with a limited number of labeled nodes, i.e., low-labeling rate. GRAND++ is a class of continuous-depth graph deep learning architectures whose theoretical underpinning is the diffusion process on graphs with a source term. The source term guarantees two interesting theoretical properties of GRAND++: (i) the representation of graph nodes, under the dynamics of GRAND++, will not converge to a constant vector over all nodes even as the time goes to infinity, which mitigates the over-smoothing issue of graph neural networks and enables graph learning in very deep architectures. (ii) GRAND++ can provide accurate classification even when the model is trained with a very limited number of labeled training data. We experimentally verify the above two advantages on various graph deep learning benchmark tasks, showing a significant improvement over many existing graph neural networks.more » « less
- 
            Xu, Jinbo (Ed.)Abstract Motivation Cryo-Electron Tomography (cryo-ET) is a 3D bioimaging tool that visualizes the structural and spatial organization of macromolecules at a near-native state in single cells, which has broad applications in life science. However, the systematic structural recognition and recovery of macromolecules captured by cryo-ET are difficult due to high structural complexity and imaging limits. Deep learning-based subtomogram classification has played critical roles for such tasks. As supervised approaches, however, their performance relies on sufficient and laborious annotation on a large training dataset. Results To alleviate this major labeling burden, we proposed a Hybrid Active Learning (HAL) framework for querying subtomograms for labeling from a large unlabeled subtomogram pool. Firstly, HAL adopts uncertainty sampling to select the subtomograms that have the most uncertain predictions. This strategy enforces the model to be aware of the inductive bias during classification and subtomogram selection, which satisfies the discriminativeness principle in AL literature. Moreover, to mitigate the sampling bias caused by such strategy, a discriminator is introduced to judge if a certain subtomogram is labeled or unlabeled and subsequently the model queries the subtomogram that have higher probabilities to be unlabeled. Such query strategy encourages to match the data distribution between the labeled and unlabeled subtomogram samples, which essentially encodes the representativeness criterion into the subtomogram selection process. Additionally, HAL introduces a subset sampling strategy to improve the diversity of the query set, so that the information overlap is decreased between the queried batches and the algorithmic efficiency is improved. Our experiments on subtomogram classification tasks using both simulated and real data demonstrate that we can achieve comparable testing performance (on average only 3% accuracy drop) by using less than 30% of the labeled subtomograms, which shows a very promising result for subtomogram classification task with limited labeling resources. Availability and implementation https://github.com/xulabs/aitom. Supplementary information Supplementary data are available at Bioinformatics online.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    