skip to main content


Title: An ethylene cross-bridged pentaazamacrocycle and its Cu 2+ complex: constrained ligand topology and excellent kinetic stability
Rigid and topologically constrained ethylene cross-bridged tetraazamacrocycles have been increasingly utilised for thirty years as they form remarkably stable transition metal complexes for catalysis, biomedical imaging, and inorganic drug molecule applications. Extending these benefits to pentaazamacrocycles has been achieved and a first transition metal complex prepared and structurally characterized.  more » « less
Award ID(s):
1911370
NSF-PAR ID:
10276811
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
56
Issue:
54
ISSN:
1359-7345
Page Range / eLocation ID:
7519 to 7522
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Indole is one of the most important heterocycles in organic synthesis, natural products, and drug discovery. Recently, tremendous advances in the selective functionalization of indoles have been reported. Although the most important advances have been powered by transition metal catalysis, exceedingly useful methods in the absence of transition metals have also been reported. In this review, we provide an overview of functionalization reactions of indoles that have been published in the last years with a focus on the most recent advances, aims, and future trends. The review is organized by the positional selectivity and type of methods used for functionalization. In particular, we discuss major advances in transition‐metal‐catalyzed C−H functionalization at the classical C2/C3 positions, transition‐metal‐catalyzed C−H functionalization at the remote C4/C7 positions, transition‐metal‐catalyzed cross‐coupling, and transition‐metal‐free functionalization.

    magnified image

     
    more » « less
  2. Electrocatalysis has become an important topic in various areas of research, including chemical catalysis, environmental research, and chemical engineering. There have been a multitude of different catalysts used in the electrocatalytic reduction of CO2, which include large classes of materials such as transition metal oxide nanoparticles (TMO), transition metal nanoparticles (TMNp), carbon-based nanomaterials, and transition metal sulfides (TMS), as well as porphyrins and phthalocyanine molecules. This review is focused on the CO2 reduction reaction (CO2RR) and the main products produced using TMS nanomaterials. The main reaction products of the CO2RR include carbon monoxide (CO), formate/formic acid (HCOO−/HCOOH), methanol (CH3OH), ethanol (CH3CH2OH), methane (CH4), and ethene (C2H4). The products of the CO2RR have been linked to the type of transition metal–sulfide catalyst used in the reaction. The TMS has been shown to control the intermediate products and thus the reaction pathway. Both experimental and computational methods have been utilized to determine the CO2 binding and chemically reduced intermediates, which drive the reaction pathways for the CO2RR and are discussed in this review. 
    more » « less
  3. Abstract

    Vanadium dioxide (VO2) is a well‐studied Mott‐insulator because of the very abrupt physical property switching during its semiconductor‐to‐metal transition (SMT) around 341 K (68 °C). In this work, through novel oxide‐metal nanocomposite designs (i.e., Au:VO2and Pt:VO2), a very broad range of SMT temperature tuning from323.5 to366.7 K has been achieved by varying the metallic secondary phase in the nanocomposites (i.e., Au:VO2and Pt:VO2thin films, respectively). More surprisingly, the SMTTccan be further lowered to301.8 K (near room temperature) by reducing the Au particle size from 11.7 to 1.7 nm. All the VO2nanocomposite thin films maintain superior phase transition performance, i.e., large transition amplitude, very sharp transition, and narrow width of thermal hysteresis. Correspondingly, a twofold variation of the complex dielectric function has been demonstrated in these metal‐VO2nanocomposites. The wide range physical property tuning is attributed to the band structure reconstruction at the metal‐VO2phase boundaries. This demonstration paved a novel approach for tuning the phase transition property of Mott‐insulating materials to near room temperature transition, which is important for sensors, electrical switches, smart windows, and actuators.

     
    more » « less
  4. Design of hetero tri metallic molecules, especially those containing at least two different metals with close atomic numbers, radii, and the same coordination number/environment is a challenging task. This quest is greatly facilitated by having a heterobimetallic parent molecule that features multiple metal sites with only some of those displaying substitutional flexibility. Recently, a unique heterobimetallic complex LiMn 2 (thd) 5 (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) has been introduced as a single-source precursor for the preparation of a popular spinel cathode material, LiMn 2 O 4 . Theoretical calculations convincingly predict that in the above trinuclear molecule only one of the Mn sites is sufficiently flexible to be substituted with another 3d transition metal. Following those predictions, two hetero tri metallic complexes, LiMn 2−x Co x (thd) 5 ( x = 1 ( 1a ) and 0.5 ( 1b )), that represent full and partial substitution, respectively, of Co for Mn in the parent molecule, have been synthesized. X-ray structural elucidation clearly showed that only one transition metal position in the trinuclear molecule contains Co, while the other site remains fully occupied by Mn. A number of techniques have been employed for deciphering the structure and composition of hetero tri metallic compounds. Synchrotron resonant diffraction experiments unambiguously assigned 3d transition metal positions as well as provided a precise “site-specific Mn/Co elemental analysis” in a single crystal, even in an extremely difficult case of severely disordered structure formed by the superposition of two enantiomers. DART mass spectrometry and magnetic measurements clearly confirmed the presence of hetero tri metallic species LiMnCo(thd) 5 rather than a statistical mixture of two hetero bi metallic LiMn 2 (thd) 5 and LiCo 2 (thd) 5 molecules. Heterometallic precursors 1a and 1b were found to exhibit a clean decomposition yielding phase-pure LiMnCoO 4 and LiMn 1.5 Co 0.5 O 4 spinels, respectively, at the relatively low temperature of 400 °C. The latter oxide represents an important “5 V spinel” cathode material for the lithium ion batteries. Transmission electron microscopy confirmed a homogeneous distribution of transition metals in quaternary oxides obtained by pyrolysis of single-source precursors. 
    more » « less
  5. Energy harvesting from solar and water has created ripples in materials energy research for the last several decades, complemented by the rise of Hydrogen as a clean fuel. Among these, water electrolysis leading to generation of oxygen and hydrogen, has been one of the most promising routes towards sustainable alternative energy generation and storage, with applications ranging from metal-​air batteries, fuel cells, to solar-​to-​fuel energy conversion systems. In fact, solar water splitting is one of the most promising method to produce Hydrogen without depleting fossil-​fuel based natural resources. However, the efficiency and practical feasibility of water electrolysis is limited by the anodic oxygen evolution reaction (OER)​, which is a kinetically sluggish, electron-​intensive uphill reaction. A slow OER process also slows the other half- cell reaction, i.e. the hydrogen evolution reaction (HER) at the cathode. Hence, designing efficient catalysts for OER process from earth-​abundant resources has been one of the primary concerns for advancing solar water splitting. In the Nath group we have focused on transition metal chalcogenides as efficient OER electrocatalysts. We have proposed the idea that these chalcogenides, specifically, selenides and tellurides will show much better OER catalytic activity due to increasing covalency around the catalytically active transition metal site, compared to the oxides caused by decreasing electronegativity of the anion, which in turn leads to variation of chem. potential around the transition metal center, [e.g. lowering the Ni 2+ -​-​> Ni 3+ oxidn. potential in Ni-​based catalysts where Ni 3+ is the actually catalytically active species]​. Based on such hypothesis, we have synthesized a plethora of transition metal selenides including those based on Ni, Ni-​Fe, Co, and Ni-​Co, which show high catalytic efficiency characterized by low onset potential and overpotential at 10 mA​/cm 2 [Ni 3 Se 2 - 200 - 290 mV; Co 7 Se 8 - 260 mV; FeNi 2 Se 4 -​NrGO - 170 mV (NrGO - N-​doped reduced graphene oxide)​; NiFe 2 Se 4 - 210 mV; CoNi 2 Se 4 - 190 mV; Ni 3 Te 2 - 180 mV]​. 
    more » « less