skip to main content


Title: An Integrated Approach to Energy Education in Engineering
What do engineering students in 2020 need to know about energy to be successful in the workplace and contribute to addressing society’s issues related to energy? Beginning with this question, we have designed a new course for second-year engineering students. Drawing on the interdisciplinary backgrounds of our diverse team of engineering instructors, we aimed to provide an introduction to energy for all engineering students that challenged the dominant discourse in engineering by valuing students’ lived experiences and bringing in examples situated in different cultural contexts. An Integrated Approach to Energy was offered for the first time in Spring 2020 for 18 students. In this paper, we describe the design of the course including learning objectives, content, and pedagogical approach. We assessed students’ learning using exams and the impact of the overall course using interviews. Students demonstrated achievement of the learning objectives in technical areas. In addition, interviews revealed that they learned about environmental, economic, and social aspects of engineering practice. We intend for this course to serve as a model of engineering as a sociotechnical endeavor by challenging students with scenarios that are technically demanding and require critical thinking about contextual implications.  more » « less
Award ID(s):
1836504
NSF-PAR ID:
10276819
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Sustainability
Volume:
12
Issue:
21
ISSN:
2071-1050
Page Range / eLocation ID:
9145
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Instructor-led presentation-based teaching mainly focuses on delivering content. Whereas student active presentations-based teaching approaches require students to take leadership in learning actions. Many teaching and learning strategies were adopted to foster active student participation during in-class learning activities. We developed the student presentation-based effective teaching (SPET) approach in 2014 to make student presentation activity the central element of learning challenging concepts. We have developed several versions to meet the need for teaching small classes (P. Tyagi, "Student Presentation Based Effective Teaching (SPET) Approach for Advanced Courses," in ASME IMECE 2016-66029, V005T06A026), large enrolment classes (P. Tyagi, "Student Presentation Based Teaching (SPET) Approach for Classes With Higher Enrolment," ASME IMECE 2018-88463, V005T07A035), and online teaching during COVID-19. (P. Tyagi, "Second Modified Student Presentation Based Effective Teaching (SPET) Method Tested in COVID-19 Affected Senior Level Mechanical Engineering Course," in ASME IMECE 2020-23615, V009T09A026). The SPET approach has successfully engaged students with varied interests and competence levels in the learning process. SPET approach has also made it possible to cover new topics such as training engineering students about positive intelligence skills to foster lifelong learning aptitude and doing engineering projects in a group setting. However, it was noted that many students who were overwhelmed with parallel academic demands in other courses and different activities were underperforming via SPET-based learning strategies. SPET core functioning depends on the following steps: Step 1: Provide a set of conceptual and topical questions for students to answer individually after self-education from the recommended textbook or course material, Step-2: Group presentations are prepared by the prepared students for in-class discussion, Step-3: Group makes a presentation in class 1-2 weeks after the day of the assignment to seek instructor feedback and to do peer discussion. The instructor noted that students unfamiliar with the new concepts and terminologies in the SPET assignment struggled to respond to questions individually and contribute to the group discussion based on their presentation. Several motivated students who invested time in familiarizing new concepts and terminologies met or exceeded the expectations. However, a significant student population struggled. To alleviate this issue author has implemented a further improvement in SPET approach. This paper reports teaching experiments conducted in MECH 487 Photovoltaic Cells and Solar Thermal Energy System and MECH 462 Design of Energy Systems course. This improvement requires augmenting SPET with instructor-led concept familiarization discussion on the day of issuing the assignment or close to that; for this step instructor utilized exemplary student work from prior SPET-based teaching of the same course. In the survey, many students expressed their views about the improvement and reported introductory discussions were helpful and addressed several reservations and impediments students encountered. This paper will discuss the structure of the new improvement strategy and outcomes-including student feedback and comments. 
    more » « less
  2. This paper details the process of developing and adapting a narrative framework for teaching an introductory geotechnical engineering course (EGR 340) through a systematic iterative procedure that embeds conceptual learning into a story format and, over time, elaborates elements and interactions within the story using methods of transmedia storytelling. Although the tools are presented within the context of geotechnical engineering, the approach can be applied throughout engineering education. The elaborative transmedia storytelling process we describe is based on the Imaginative Education (IE) teaching approach. Well-grounded in the learning sciences--but novel in engineering education--IE facilitates student engagement through the use of cognitive tools (such as extremes of reality, heroism, and the exploration of binaries). These tools are connected to types of understanding and serve to enhance a sense of mystery and wonder for topics that might not otherwise register as being immediately relevant to students. A significant benefit of this approach is that that it lends itself to modification and personalization through the inclusion of new features and methods of interaction at the level of the whole story and at the level of story elements. Four types of understanding and their associated cognitive tools were used in EGR 340 and their application is described in this paper. They include: • Mythic understanding using a fantasy narrative that played on the idea that geotechnical engineers refer to their field as the “dark arts of engineering.” • Romantic understanding using heroic narratives that helped students put themselves in the place of Terzaghi and Casagrande as they developed the field. Extremes of reality was another Romantic tool used throughout the course. For example, students learned about soil stress by first solving the mystery of how quicksand works. • Theoretic understanding using concept maps and narrative was used at both the course and unit level to organize concepts. • Ironic understanding using discussion of the inadequacies of theoretic understanding to recognize the reference to “dark arts.” Transmedia storytelling through extensive use of short video clips and other means was used to enhance the application of these tools. For example, students traveled virtually to Venice where they joined a noisy gondola tour to examine building foundations and learn about how poor water policies impacted the sinking of the city. Course evaluation and lesson assessment data were collected in 2018, 2020, and 2022, with each year being associated with a different version of the course. Using these data, we present a mixed-methods analysis of learning outcomes that provides evidence for the effectiveness of this approach at different steps along the way. Non-parametric comparisons of student assessment data demonstrated that student conceptual learning was relatively stable across measures and versions, but that students in the fully transmedia iteration generally performed more strongly on assessments of project-based learning (Borrow/Fill; Atterberg; Dam). Thematic analysis of student responses to open-ended course evaluation prompts demonstrates that engagement was high across all versions of the course, and that students in the 2022 version discussed engineering topics in a manner that included personal connections and reflections. 
    more » « less
  3. null (Ed.)
    To meet the rising demand for computer science (CS) courses, K-12 educators need to be prepared to teach introductory concepts and skills in courses such as Computer Science Principles (CSP), which takes a breadth-first approach to CS and includes topics beyond programming such as data, impacts of computing, and networks. Educators are now also being asked to teach more advanced concepts in courses such as the College Board's Advanced Placement Computer Science A (CSA) course, which focuses on advanced programming using Java and includes topics such as objects, inheritance, arrays, and recursion. Traditional CSA curricula have not used content or pedagogy designed to engage a broad range of learners and support their success. Unlike CSP, which is attracting more underrepresented students to computing as it was designed, CSA continues to enroll mostly male, white, and Asian students [College Board 2019, Ericson 2020, Sax 2020]. In order to expand CS education opportunities, it is crucial that students have an engaging experience in CSA similar to CSP. Well-designed differentiated professional development (PD) that focuses on content and pedagogy is necessary to meet individual teacher needs, to successfully build teacher skills and confidence to teach CSA, and to improve engagement with students [Darling-Hammond 2017]. It is critical that as more CS opportunities and courses are developed, teachers remain engaged with their own learning in order to build their content knowledge and refine their teaching practice [CSTA 2020]. CSAwesome, developed and piloted in 2019, offers a College Board endorsed AP CSA curriculum and PD focused on supporting the transition of teachers and students from CSP to CSA. This poster presents preliminary findings aimed at exploring the supports and challenges new-to-CSA high school level educators face when transitioning from teaching an introductory, breadth-first course such as CSP to teaching the more challenging, programming-focused CSA course. Five teachers who completed the online CSAwesome summer 2020 PD completed interviews in spring 2021. The project employed an inductive coding scheme to analyze interview transcriptions and qualitative notes from teachers about their experiences learning, teaching, and implementing CSP and CSA curricula. Initial findings suggest that teachers’ experience in the CSAwesome PD may improve their confidence in teaching CSA, ability to effectively use inclusive teaching practices, ability to empathize with their students, problem-solving skills, and motivation to persist when faced with challenges and difficulties. Teachers noted how the CSAwesome PD provided them with a student perspective and increased feelings of empathy. Participants spoke about the implications of the COVID-19 pandemic on their own learning, student learning, and teaching style. Teachers enter the PD with many different backgrounds, CS experience levels, and strengths, however, new-to-CSA teachers require further PD on content and pedagogy to transition between CSP and CSA. Initial results suggest that the CSAwesome PD may have an impact on long-term teacher development as new-to-CSA teachers who participated indicated a positive impact on their teaching practices, ideologies, and pedagogies. 
    more » « less
  4. This Research Full paper focuses on perceptions and experiences of freshman and sophomore engineering students when playing an online serious engineering game that was designed to improve engineering intuition and knowledge of statics. Use of serious educational engineering games has increased in engineering education to help students increase technical competencies in engineering disciplines. However, few have investigated how these engineering games are experienced by the students; how games influence students' perceptions of learning, or how these factors may lead to inequitable perspectives among diverse populations of students. Purpose/Hypothesis: The purpose of this study was to explore the perceptions, appeal, and opinions about the efficacy of educational online games among a diverse population of students in an engineering mechanics statics course. It was hypothesized that compared to majority groups (e.g., men, White), women of color who are engineering students would experience less connections to the online educational game in terms of ease of use and level of frustration while playing. It is believed that these discordant views may negatively influence the game's appeal and efficacy towards learning engineering in this population of students. Design/Method: The Technology Acceptance Model (TAM) is expanded in this study, where the perspectives of women of colour (Latinx, Asian and African American) engineering students are explored. The research approach employed in this study is a mixed-method sequential exploratory design, where students first played the online engineering educational game, then completed a questionnaire, followed by participation in a focus group. Responses were initially analyzed through open and magnitude coding approaches to understand whether students thought these educational games reflected their personal culture. Results: Preliminary results indicate that though the majority of the students were receptive to using the online engineering software for their engineering education, merely a few intimated that they would use this software for engineering exam or technical job interview preparation. A level-one categorical analysis identified a few themes that comprised unintended preservation of inequality in favor of students who enjoyed contest-based education and game technology. Competition-based valuation of presumed mastery of course content fostered anxiety and intimidation among students, which caused some to "game the game" instead of studying the material, to meet grade goals. Some students indicated that they spent more time (than necessary) to learn the goals of the game than engineering content itself, suggesting a need to better integrate course material while minimizing cognitive effort in learning to navigate the game. Conclusions: Preliminary results indicate that engineering software's design and the way is coupled with course grading and assessment of learning outcomes, affect student perceptions of the technology's acceptance, usefulness, and ease of use as a "learning tool." Students were found to have different expectations of serious games juxtaposed software/apps designed for entertainment. Conclusions also indicate that acceptance of inquiry-based educational games in a classroom among diverse populations of students should clearly articulate and connect the game goals/objectives with class curriculum content. Findings also indicate that a multifaceted schema of tools, such as feedback on game challenges, and explanations for predictions of the game should be included in game/app designs. 
    more » « less
  5. null (Ed.)
    This paper is based on a series of semi-structured, qualitative interviews that were conducted with students, by an undergraduate student and lead author of this paper, that focused on their experiences with educational technologies and online teaching pedagogy in the wake of the COVID-19 pandemic. As U.S. educators scrambled to adapt to online course delivery modes as a result of the first wave of the pandemic in the spring 2020 semester, those in the educational technology and online learning community saw the potential of this movement to vastly accelerate the implementation of online systems in higher education. A shift that may have taken 20 years to accomplish was implemented in two waves, first with the immediate forced shift to online learning in March 2020; and second, a less immediate shift to hybrid and online instruction designed to accommodate the different geographic variation in COVID-19 intensity, along with varied political and institutional ecologies surrounding online versus in-person instruction for the 2020-2021 academic year. With all of the rapid changes that were occurring during the spring of 2020, we wanted to investigate how students experienced and perceived faculty use of technology during this particular moment in time. This study documents this transition through the eyes of undergraduate students, and demonstrates the varied ways in which faculty navigated the transition to online learning. According to our interviewees, some faculty were thoughtful and competent and provided a supportive environment that paid attention to a students’ capacity for online learning, rather than maintaining traditional instructional practices. Others relied on practices from in-person instruction that were familiar, but appeared to be nervous in the new online teaching environment. Then there were those who seemed occupied by other concerns, where a focus on effective undergraduate teaching remained limited to begin with, and their approach to online instruction was driven by convenience. Our qualitative data clearly reveals that the ways in which faculty conducted their online courses directly impacted student learning experiences. In this study, we set out to document both the faculty instructional strategies in a hybrid/online environment and student accounts of those choices and their resulting experiences. While we continue to analyze this unique data set on this moment of transition in engineering education, we hope that this paper will also lead to policy recommendations regarding faculty adaptations to online instruction in general. We include some initial thoughts and recommendations below. 
    more » « less