skip to main content


This content will become publicly available on July 6, 2024

Title: The “Who” in Engineering: Sociotechnical Engineering as Memorable and Relevant
Does emphasizing the role of people in engineering influence the memorability of engineering content? This study is part of a larger project through which our team developed a new undergraduate energy course to better reflect students’ cultures and lived experiences through asset-based pedagogies to help students develop a sociotechnical mindset in engineering problem solving. In this study, students in the class were invited to participate in semi-structured interviews (n=5) to explore our effectiveness in helping them develop a sociotechnical mindset around energy issues and conceptualize engineering as a sociotechnical endeavor. This study focuses on an activity during the interview where the participants were asked to sort a variety of images associated with class learning experiences along a spectrum of least to most memorable. Emergent themes from students’ responses revolved around learning experiences that included global perspectives and emphasized a “who” (i.e., whose problems, who is impacted by engineering, and what type of engineers the students will choose to become) as the most memorable. Our results indicate that students found the sociotechnical aspects of the course more memorable than the traditional canonical engineering content. These findings suggest that framing engineering content as sociotechnical can be one strategy to increase student engagement, increase memorability of lessons, and help students to think more deeply about their own goals as future engineers.  more » « less
Award ID(s):
1836504
NSF-PAR ID:
10476214
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
International Journal of Engineering Pedagogy
Date Published:
Journal Name:
International Journal of Engineering Pedagogy (iJEP)
Volume:
13
Issue:
5
ISSN:
2192-4880
Page Range / eLocation ID:
72 to 90
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The social/technical dualism in the engineering curriculum leaves students ill-prepared to tackle real-world technical problems in their social, economic, and political contexts (Cech, 2013; Faulkner, 2007; Trevelan, 2010, 2014). Increasingly, students have expressed the desire for their technical courses to show the interplay between social and technical considerations (Leydens & Lucena, 2017), but they have few opportunities to develop these sociotechnical ways of thinking (i.e., values, attitudes, and skills that integrate the social and technical). Instead, students are left to infer engineering as technically neutral through the instructional decisions that make up an engineering curriculum (Cech, 2013; Trevelan, 2014). In this study, we focus on how students understand the role of sociotechnical thinking in engineering. Particularly, this study centers seven minoritized students in an introductory engineering computation class who are pursuing an engineering degree. The study takes place at a medium private university in New England. These seven students are from a group of roughly seventy students split between two of the five sections for the course. These two sections were recently revised to include more sociotechnical readings, discussions, and homework facilitated with learning assistants. We are interested in understanding the self-described sense of belonging that these students feel as they relate it to learning about engineering as a sociotechnical field. While the dualism between engineering's technical and social dimensions has been studied in ASEE LEES papers, articles in Engineering Studies, broader engineering education research, and Science, Technology, and Science publications (e.g., Cech, 2013; Faulkner, 2007; Leydens & Lucena, 2017; Riley, 2017; Wisnioski, 2012), there is a need to connect this vast literature with the similarly extensive research on students' sense of belonging and engineering identity development, specifically for those students who have historically been excluded from engineering. Specifically, we draw on W.E.B. DuBois's notion of a 'double consciousness' from the Souls of Black Folks (1903) as a lens through which to understand how these seven students take on the political, economic, and social dimensions presented to them through a first-year engineering curricular redesign around engineering as sociotechnical. We note the small-n design of this study (Slaton & Pawley, 2018). The seven interviewed students are gender and racial minorities in engineering. However, we note that they do not represent all minoritized students in engineering, and to respect and elevate their experiences, we take a narrative approach. This study is intended to center the perspectives and experiences of these seven students as they navigate an engineering learning environment. We do not intend for the findings to be generalizable or exhaustive but informative as we think about scaling up the sociotechnical curricular redesign in engineering at this university and more broadly. 
    more » « less
  2. This Research Full paper focuses on perceptions and experiences of freshman and sophomore engineering students when playing an online serious engineering game that was designed to improve engineering intuition and knowledge of statics. Use of serious educational engineering games has increased in engineering education to help students increase technical competencies in engineering disciplines. However, few have investigated how these engineering games are experienced by the students; how games influence students' perceptions of learning, or how these factors may lead to inequitable perspectives among diverse populations of students. Purpose/Hypothesis: The purpose of this study was to explore the perceptions, appeal, and opinions about the efficacy of educational online games among a diverse population of students in an engineering mechanics statics course. It was hypothesized that compared to majority groups (e.g., men, White), women of color who are engineering students would experience less connections to the online educational game in terms of ease of use and level of frustration while playing. It is believed that these discordant views may negatively influence the game's appeal and efficacy towards learning engineering in this population of students. Design/Method: The Technology Acceptance Model (TAM) is expanded in this study, where the perspectives of women of colour (Latinx, Asian and African American) engineering students are explored. The research approach employed in this study is a mixed-method sequential exploratory design, where students first played the online engineering educational game, then completed a questionnaire, followed by participation in a focus group. Responses were initially analyzed through open and magnitude coding approaches to understand whether students thought these educational games reflected their personal culture. Results: Preliminary results indicate that though the majority of the students were receptive to using the online engineering software for their engineering education, merely a few intimated that they would use this software for engineering exam or technical job interview preparation. A level-one categorical analysis identified a few themes that comprised unintended preservation of inequality in favor of students who enjoyed contest-based education and game technology. Competition-based valuation of presumed mastery of course content fostered anxiety and intimidation among students, which caused some to "game the game" instead of studying the material, to meet grade goals. Some students indicated that they spent more time (than necessary) to learn the goals of the game than engineering content itself, suggesting a need to better integrate course material while minimizing cognitive effort in learning to navigate the game. Conclusions: Preliminary results indicate that engineering software's design and the way is coupled with course grading and assessment of learning outcomes, affect student perceptions of the technology's acceptance, usefulness, and ease of use as a "learning tool." Students were found to have different expectations of serious games juxtaposed software/apps designed for entertainment. Conclusions also indicate that acceptance of inquiry-based educational games in a classroom among diverse populations of students should clearly articulate and connect the game goals/objectives with class curriculum content. Findings also indicate that a multifaceted schema of tools, such as feedback on game challenges, and explanations for predictions of the game should be included in game/app designs. 
    more » « less
  3. There is growing evidence of the effectiveness of project-based learning (PBL) in preparing students to solve complex problems. In PBL implementations in engineering, students are treated as professional engineers facing projects centered around real-world problems, including the complexity and uncertainty that influence such problems. Not only does this help students to analyze and solve an authentic real-world task, promoting critical thinking, but also students learn from each other, learning valuable communication and teamwork skills. Faculty play an important part by assuming non-conventional roles (e.g., client, senior professional engineer, consultant) to help students throughout this instructional and learning approach. Typically in PBLs, students work on projects over extended periods of time that culminate in realistic products or presentations. In order to be successful, students need to learn how to frame a problem, identify stakeholders and their requirements, design and select concepts, test them, and so on. Two different implementations of PBL projects in a fluid mechanics course are presented in this paper. This required, junior-level course has been taught since 2014 by the same instructor. The first PBL project presented is a complete design of pumped pipeline systems for a hypothetical plant. In the second project, engineering students partnered with pre-service teachers to design and teach an elementary school lesson on fluid mechanics concepts. With the PBL implementations, it is expected that students: 1) engage in a deeper learning process where concepts can be reemphasized, and students can realize applicability; 2) develop and practice teamwork skills; 3) learn and practice how to communicate effectively to peers and to those from other fields; and 4) increase their confidence working on open-ended situations and problems. The goal of this paper is to present the experiences of the authors with both PBL implementations. It explains how the projects were scaffolded through the entire semester, including how the sequence of course content was modified, how team dynamics were monitored, the faculty roles, and the end products and presentations. Students' experiences are also presented. To evaluate and compare students’ learning and satisfaction with the team experience between the two PBL implementations, a shortened version of the NCEES FE exam and the Comprehensive Assessment of Team Member Effectiveness (CATME) survey were utilized. Students completed the FE exam during the first week and then again during the last week of the semester in order to assess students’ growth in fluid mechanics knowledge. The CATME survey was completed mid-semester to help faculty identify and address problems within team dynamics, and at the end of the semester to evaluate individual students’ teamwork performance. The results showed that no major differences were observed in terms of the learned fluid mechanics content, however, the data showed interesting preliminary observations regarding teamwork satisfaction. Through reflective assignments (e.g., short answer reflections, focus groups), student perceptions of the PBL implementations are discussed in the paper. Finally, some of the challenges and lessons learned from implementing both projects multiple times, as well as access to some of the PBL course materials and assignments will be provided. 
    more » « less
  4. Creative self-efficacy (CSE) was studied in connection to beliefs about creativity. CSE is one’s belief in their own creative potential. The belief that creativity can improve was discussed as a “Growth Creativity Mindset” (GCM), and the belief that creativity cannot improve was discussed as a “Fixed Creativity Mindset” (FCM). Creativity within engineering has been described as crucial to the field, and as an aspect that is appealing to women engineers. Undergraduate women engineering students local to the Philadelphia area volunteered to take a survey of CSE and beliefs about creativity. Quantitative data analysis showed that an increase in GCM likely results in an increase in CSE for students with higher than average GPA. A change in CSE had no effect on FCM. Interviews were conducted with 15 survey respondents with different levels of CSE who met criteria for success in the engineering major (2.5 GPA or above and successful completion of calculus II). Synthesis of the quantitative and qualitative data revealed that interview participants had similar lived experiences that lead them to a level of success in the engineering major, but different lived experiences that distinguished them with respect to CSE level. All participants were exposed to project based learning (PBL), had strong personal influences, exhibited perseverance in overcoming struggles, and described their negative perceptions of engineering before entering the major. Participants with all levels of CSE highlighted their own creativity with respect to the performing and visual arts, before reflecting on innovation as creative. Most participants with low CSE described their lack of creativity in the arts. They also discussed being “intimidated” by negative classroom experiences more than their peers with higher levels of CSE. Those with low CSE were also exposed to more engineering centered experiences in high school, and most had a parent who worked in the profession. It is expected that this research will provide a more comprehensive understanding of CSE, perceptions of engineering as a creative field, and the educational reform needed that connects creativity to engineering in an atmosphere that welcomes diversity. 
    more » « less
  5. As the need for interdisciplinary collaboration increases, industry needs engineers who are not only affluent in technical engineering skills but also efficient in skills such as communication, problem-solving, engineering ethics, and business management. As a result, engineering programs are tasked with providing students with sufficient opportunities to develop non-technical professional skills to better prepare them for the workforce. Previous research has focused on exploring how and where students tend to develop profession skills and assessments have been established to measure the level of professional skills. However, without a means to measure whether students are getting sufficient opportunities for development, it is hard for educators and engineering programs to determine whether or where scaffolding are needed. We developed an instrument to assess undergraduate engineering students’ opportunities for professional skill development. To increase content validity, we conducted 20 think-aloud interviews with students from a large Midwestern university. The aim of this WIP is two-fold. We present the preliminary results of the think-aloud interview to determine what changes need to be made to existing items and what emerging themes appear regarding to participants’ professional skill development opportunities. After thematic analysis of the interview transcripts, we revised 10 items by simplifying the grammar or altering certain words that tend to confuse participants or carry negative connotations. We found that, compared to students who have only been involved in class projects, those with co-curricular experiences tend to report more opportunities in skills related to business management principles and problem-solving skills. Co-curricular activities were also the most referenced in building communication skills. Our next step will be piloting the instrument across multiple institutions and conducting validation analysis. 
    more » « less