skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Co-designing Socially Assistive Sidekicks for Motion-based AAC
Augmentative and alternative communication (AAC) devices enable speech-based communication. However, AAC devices do not support nonverbal communication, which allows people to take turns, regulate conversation dynamics, and express intentions. Nonverbal communication requires motion, which is often challenging for AAC users to produce due to motor constraints. In this work, we explore how socially assistive robots, framed as ''sidekicks,'' might provide augmented communicators (ACs) with a nonverbal channel of communication to support their conversational goals. We developed and conducted an accessible co-design workshop that involved two ACs, their caregivers, and three motion experts. We identified goals for conversational support, co-designed prototypes depicting possible sidekick forms, and enacted different sidekick motions and behaviors to achieve speakers' goals. We contribute guidelines for designing sidekicks that support ACs according to three key parameters: attention, precision, and timing. We show how these parameters manifest in appearance and behavior and how they can guide future designs for augmented nonverbal communication.  more » « less
Award ID(s):
1734456
PAR ID:
10276858
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
HRI '21: Proceedings of the 2021 ACM/IEEE International Conference on Human-Robot Interaction
Page Range / eLocation ID:
24 to 33
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Augmentative and alternative communication (AAC) devices enable speech-based communication, but generating speech is not the only resource needed to have a successful conversation. Being able to signal one wishes to take a turn by raising a hand or providing some other cue is critical in securing a turn to speak. Experienced conversation partners know how to recognize the nonverbal communication an augmented communicator (AC) displays, but these same nonverbal gestures can be hard to interpret by people who meet an AC for the first time. Prior work has identified motion through robots and expressive objects as a modality that can support communication. In this work, we work closely with an AAC user to understand how motion through a physical expressive object can support their communication. We present our process and resulting lessons on the designed object and the co-design process. 
    more » « less
  2. Autistic children face significant challenges in vocal communication and social interaction, often leading to social isolation. There is evidence that Augmentative and Alternative Communication (AAC) offers support to mitigate these challenges, enabling them to communicate with non-vocal means through forms of AAC, such as speech-generation devices (SGDs). However, the adoption and use of SGDs are hindered by several factors, including the large amount of practice required to learn to use SGDs and the limited options for highly engaging social learning contexts. Our study introduces the novel approach of using SGDs as game controller for digital and interactive games. With three design goals guiding our work, we conducted a Wizard-of-Oz formative case study with five participants aged 3-5 years, who were learning to use their SGD. We simulated a digital coloring game, integrating the speech-generated output of the participant's SGD to function as the game's controller. From this case study, we observed that all participants engaged with the game using their SGD for at least one turn, and two participants also engaged in emerging joint attention responses with the game and game's facilitator. This paper discusses these findings and contributes directions for future research, with suggestions for the design of future SGD-controlled games and exploration of social connection and collaboration between autistic children who use AAC and their caregivers, siblings, and peers. 
    more » « less
  3. Autism is a neurodevelopmental disability that impacts one’s social communication and interaction. When left unsupported, this can increase the amount of loneliness felt by autistic people. Communication technology, such as AAC, can be helpful in supporting social communication, especially when co-designed with autistic people. We conducted a series of design workshops to co-design a new AAC system specifically supporting social communication. In this paper, we focus on the accessibility issues that were identified when running our workshops and provide recommendations on how to improve the process. We found that it is critical to build support for information processing time into the workshops, include a variety of AAC stakeholders, and create a shared vocabulary between the workshop participants to make design workshops more accessible to autistic adults. 
    more » « less
  4. Users of Augmentative and Alternative Communication (AAC) may write letter-by-letter via an interface that uses a character language model. However, most state-of-the-art large pretrained language models predict subword tokens of variable length. We investigate how to practically use such models to make accurate and efficient character predictions. Our algorithm for producing character predictions from a subword large language model (LLM) provides more accurate predictions than using a classification layer, a byte-level LLM, or an n-gram model. Additionally, we investigate a domain adaptation procedure based on a large dataset of sentences we curated based on scoring how useful each sentence might be for spoken or written AAC communication. We find our procedure further improves model performance on simple, conversational text. 
    more » « less
  5. Purpose:Augmentative and alternative communication (AAC) technology innovation is urgently needed to improve outcomes for children on the autism spectrum who are minimally verbal. One potential technology innovation is applying artificial intelligence (AI) to automate strategies such as augmented input to increase language learning opportunities while mitigating communication partner time and learning barriers. Innovation in AAC research and design methodology is also needed to empirically explore this and other applications of AI to AAC. The purpose of this report was to describe (a) the development of an AAC prototype using a design methodology new to AAC research and (b) a preliminary investigation of the efficacy of this potential new AAC capability. Method:The prototype was developed using a Wizard-of-Oz prototyping approach that allows for initial exploration of a new technology capability without the time and effort required for full-scale development. The preliminary investigation with three children on the autism spectrum who were minimally verbal used an adapted alternating treatment design to compare the effects of a Wizard-of-Oz prototype that provided automated augmented input (i.e., pairing color photos with speech) to a standard topic display (i.e., a grid display with line drawings) on visual attention, linguistic participation, and (for one participant) word learning during a circle activity. Results:Preliminary investigation results were variable, but overall participants increased visual attention and linguistic participation when using the prototype. Conclusions:Wizard-of-Oz prototyping could be a valuable approach to spur much needed innovation in AAC. Further research into efficacy, reliability, validity, and attitudes is required to more comprehensively evaluate the use of AI to automate augmented input in AAC. 
    more » « less