skip to main content

Title: A Hybrid Optical-Electrical Analog Deep Learning Accelerator Using Incoherent Optical Signals
We present a hybrid optical-electrical analog deep learning (DL) accelerator, the first work to use incoherent optical signals for DL workloads. Incoherent optical designs are more attractive than coherent ones as the former can be more easily realized in practice. However, a significant challenge in analog DL accelerators, where multiply-accumulate operations are dominant, is that there is no known solution to perform accumulation using incoherent optical signals. We overcome this challenge by devising a hybrid approach: accumulation is done in the electrical domain, while multiplication is performed in the optical domain. The key technology enabler of our design is the transistor laser, which performs electrical-to-optical and optical-to-electrical conversions efficiently to tightly integrate electrical and optical devices into compact circuits. As such, our design fully realizes the ultra high-speed and high-energy-efficiency advantages of analog and optical computing. Our evaluation results using the MNIST benchmark show that our design achieves 2214× and 65× improvements in latency and energy, respectively, compared to a state-of-the-art memristor-based analog design.
; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
GLSVLSI '21: Proceedings of the 2021 on Great Lakes Symposium on VLSI
Page Range or eLocation-ID:
271 to 276
Sponsoring Org:
National Science Foundation
More Like this
  1. Time-frequency (TF) filtering of analog signals has played a crucial role in the development of radio-frequency communications and is currently being recognized as an essential capability for communications, both classical and quantum, in the optical frequency domain. How best to design optical time-frequency (TF) filters to pass a targeted temporal mode (TM), and to reject background (noise) photons in the TF detection window? The solution for ‘coherent’ TF filtering is known—the quantum pulse gate—whereas the conventional, more common method is implemented by a sequence of incoherent spectral filtering and temporal gating operations. To compare these two methods, we derive a general formalism for two-stage incoherent time-frequency filtering, finding expressions for signal pulse transmission efficiency, and for the ability to discriminate TMs, which allows the blocking of unwanted background light. We derive the tradeoff between efficiency and TM discrimination ability, and find a remarkably concise relation between these two quantities and the time-bandwidth product of the combined filters. We apply the formalism to two examples—rectangular filters or Gaussian filters—both of which have known orthogonal-function decompositions. The formalism can be applied to any state of light occupying the input temporal mode, e.g., ‘classical’ coherent-state signals or pulsed single-photon states of light. Inmore »contrast to the radio-frequency domain, where coherent detection is standard and one can use coherent matched filtering to reject noise, in the optical domain direct detection is optimal in a number of scenarios where the signal flux is extremely small. Our analysis shows how the insertion loss and SNR change when one uses incoherent optical filters to reject background noise, followed by direct detection, e.g. photon counting. We point out implications in classical and quantum optical communications. As an example, we study quantum key distribution, wherein strong rejection of background noise is necessary to maintain a high quality of entanglement, while high signal transmission is needed to ensure a useful key generation rate.

    « less
  2. Photonic network-on-chip (PNoC) architectures employ photonic links with dense wavelength-division multiplexing (DWDM) to enable high throughput on-chip transfers. Unfortunately, increasing the DWDM degree (i.e., using a larger number of wavelengths) to achieve a higher aggregated data rate in photonic links and, hence, higher throughput in PNoCs, requires sophisticated and costly laser sources along with extra photonic hardware. This extra hardware can introduce undesired noise to the photonic link and increase the bit error rate (BER), power, and area consumption of PNoCs. To mitigate these issues, the use of 4-pulse amplitude modulation (4-PAM) signaling, instead of the conventional on-off keying (OOK) signaling, can halve the wavelength signals utilized in photonic links for achieving the target aggregate data rate while reducing the overhead of crosstalk noise, BER, and photonic hardware. There are various designs of 4-PAM modulators reported in the literature. For example, the signal superposition (SS)–, electrical digital-to-analog converter (EDAC)–, and optical digital-to-analog converter (ODAC)–based designs of 4-PAM modulators have been reported. However, it is yet to be explored how these SS-, EDAC-, and ODAC-based 4-PAM modulators can be utilized to design DWDM-based photonic links and PNoC architectures. In this article, we provide a systematic analysis of the SS, EDAC, andmore »ODAC types of 4-PAM modulators from prior work with regards to their applicability and utilization overheads. We then present a heuristic-based search method to employ these 4-PAM modulators for designing DWDM-based SS, EDAC, and ODAC types of 4-PAM photonic links with two different design goals: (i) to attain the desired BER of 10 -9 at the expense of higher optical power and lower aggregate data rate and (ii) to attain maximum aggregate data rate with the desired BER of 10 -9 at the expense of longer packet transfer latency. We then employ our designed 4-PAM SS–, 4-PAM EDAC–, 4-PAM ODAC–, and conventional OOK modulator–based photonic links to constitute corresponding variants of the well-known CLOS and SWIFT PNoC architectures. We eventually compare our designed SS-, EDAC-, and ODAC-based variants of 4-PAM links and PNoCs with the conventional OOK links and PNoCs in terms of performance and energy efficiency in the presence of inter-channel crosstalk. From our link-level and PNoC-level evaluation, we have observed that the 4-PAM EDAC–based variants of photonic links and PNoCs exhibit better performance and energy efficiency compared with the OOK-, 4-PAM SS–, and 4-PAM ODAC–based links and PNoCs.« less
  3. Obeid, Iyad Selesnick (Ed.)
    Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEGmore »channel separately. We use the hypotheses generated by the P1 model and create additional features that carry information about the detected events and their confidence. The P2 model uses these additional features and the LFCC features to learn the temporal and spatial aspects of the EEG signals using a hybrid convolutional neural network (CNN) and LSTM model. Finally, Phase 3 aggregates the results from both P1 and P2 before applying a final postprocessing step. The online system implements Phase 1 by taking advantage of the Linux piping mechanism, multithreading techniques, and multi-core processors. To convert Phase 1 into an online system, we divide the system into five major modules: signal preprocessor, feature extractor, event decoder, postprocessor, and visualizer. The system reads 0.1-second frames from each EEG channel and sends them to the feature extractor and the visualizer. The feature extractor generates LFCC features in real time from the streaming EEG signal. Next, the system computes seizure and background probabilities using a channel-based LSTM model and applies a postprocessor to aggregate the detected events across channels. The system then displays the EEG signal and the decisions simultaneously using a visualization module. The online system uses C++, Python, TensorFlow, and PyQtGraph in its implementation. The online system accepts streamed EEG data sampled at 250 Hz as input. The system begins processing the EEG signal by applying a TCP montage [8]. Depending on the type of the montage, the EEG signal can have either 22 or 20 channels. To enable the online operation, we send 0.1-second (25 samples) length frames from each channel of the streamed EEG signal to the feature extractor and the visualizer. Feature extraction is performed sequentially on each channel. The signal preprocessor writes the sample frames into two streams to facilitate these modules. In the first stream, the feature extractor receives the signals using stdin. In parallel, as a second stream, the visualizer shares a user-defined file with the signal preprocessor. This user-defined file holds raw signal information as a buffer for the visualizer. The signal preprocessor writes into the file while the visualizer reads from it. Reading and writing into the same file poses a challenge. The visualizer can start reading while the signal preprocessor is writing into it. To resolve this issue, we utilize a file locking mechanism in the signal preprocessor and visualizer. Each of the processes temporarily locks the file, performs its operation, releases the lock, and tries to obtain the lock after a waiting period. The file locking mechanism ensures that only one process can access the file by prohibiting other processes from reading or writing while one process is modifying the file [9]. The feature extractor uses circular buffers to save 0.3 seconds or 75 samples from each channel for extracting 0.2-second or 50-sample long center-aligned windows. The module generates 8 absolute LFCC features where the zeroth cepstral coefficient is replaced by a temporal domain energy term. For extracting the rest of the features, three pipelines are used. The differential energy feature is calculated in a 0.9-second absolute feature window with a frame size of 0.1 seconds. The difference between the maximum and minimum temporal energy terms is calculated in this range. Then, the first derivative or the delta features are calculated using another 0.9-second window. Finally, the second derivative or delta-delta features are calculated using a 0.3-second window [6]. The differential energy for the delta-delta features is not included. In total, we extract 26 features from the raw sample windows which add 1.1 seconds of delay to the system. We used the Temple University Hospital Seizure Database (TUSZ) v1.2.1 for developing the online system [10]. The statistics for this dataset are shown in Table 1. A channel-based LSTM model was trained using the features derived from the train set using the online feature extractor module. A window-based normalization technique was applied to those features. In the offline model, we scale features by normalizing using the maximum absolute value of a channel [11] before applying a sliding window approach. Since the online system has access to a limited amount of data, we normalize based on the observed window. The model uses the feature vectors with a frame size of 1 second and a window size of 7 seconds. We evaluated the model using the offline P1 postprocessor to determine the efficacy of the delayed features and the window-based normalization technique. As shown by the results of experiments 1 and 4 in Table 2, these changes give us a comparable performance to the offline model. The online event decoder module utilizes this trained model for computing probabilities for the seizure and background classes. These posteriors are then postprocessed to remove spurious detections. The online postprocessor receives and saves 8 seconds of class posteriors in a buffer for further processing. It applies multiple heuristic filters (e.g., probability threshold) to make an overall decision by combining events across the channels. These filters evaluate the average confidence, the duration of a seizure, and the channels where the seizures were observed. The postprocessor delivers the label and confidence to the visualizer. The visualizer starts to display the signal as soon as it gets access to the signal file, as shown in Figure 1 using the “Signal File” and “Visualizer” blocks. Once the visualizer receives the label and confidence for the latest epoch from the postprocessor, it overlays the decision and color codes that epoch. The visualizer uses red for seizure with the label SEIZ and green for the background class with the label BCKG. Once the streaming finishes, the system saves three files: a signal file in which the sample frames are saved in the order they were streamed, a time segmented event (TSE) file with the overall decisions and confidences, and a hypotheses (HYP) file that saves the label and confidence for each epoch. The user can plot the signal and decisions using the signal and HYP files with only the visualizer by enabling appropriate options. For comparing the performance of different stages of development, we used the test set of TUSZ v1.2.1 database. It contains 1015 EEG records of varying duration. The any-overlap performance [12] of the overall system shown in Figure 2 is 40.29% sensitivity with 5.77 FAs per 24 hours. For comparison, the previous state-of-the-art model developed on this database performed at 30.71% sensitivity with 6.77 FAs per 24 hours [3]. The individual performances of the deep learning phases are as follows: Phase 1’s (P1) performance is 39.46% sensitivity and 11.62 FAs per 24 hours, and Phase 2 detects seizures with 41.16% sensitivity and 11.69 FAs per 24 hours. We trained an LSTM model with the delayed features and the window-based normalization technique for developing the online system. Using the offline decoder and postprocessor, the model performed at 36.23% sensitivity with 9.52 FAs per 24 hours. The trained model was then evaluated with the online modules. The current performance of the overall online system is 45.80% sensitivity with 28.14 FAs per 24 hours. Table 2 summarizes the performances of these systems. The performance of the online system deviates from the offline P1 model because the online postprocessor fails to combine the events as the seizure probability fluctuates during an event. The modules in the online system add a total of 11.1 seconds of delay for processing each second of the data, as shown in Figure 3. In practice, we also count the time for loading the model and starting the visualizer block. When we consider these facts, the system consumes 15 seconds to display the first hypothesis. The system detects seizure onsets with an average latency of 15 seconds. Implementing an automatic seizure detection model in real time is not trivial. We used a variety of techniques such as the file locking mechanism, multithreading, circular buffers, real-time event decoding, and signal-decision plotting to realize the system. A video demonstrating the system is available at: The final conference submission will include a more detailed analysis of the online performance of each module. ACKNOWLEDGMENTS Research reported in this publication was most recently supported by the National Science Foundation Partnership for Innovation award number IIP-1827565 and the Pennsylvania Commonwealth Universal Research Enhancement Program (PA CURE). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the official views of any of these organizations. REFERENCES [1] A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (EEG) classification tasks: a review,” J. Neural Eng., vol. 16, no. 3, p. 031001, 2019. [2] A. C. Bridi, T. Q. Louro, and R. C. L. Da Silva, “Clinical Alarms in intensive care: implications of alarm fatigue for the safety of patients,” Rev. Lat. Am. Enfermagem, vol. 22, no. 6, p. 1034, 2014. [3] M. Golmohammadi, V. Shah, I. Obeid, and J. Picone, “Deep Learning Approaches for Automatic Seizure Detection from Scalp Electroencephalograms,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York, New York, USA: Springer, 2020, pp. 233–274. [4] “CFM Olympic Brainz Monitor.” [Online]. Available: [Accessed: 17-Jul-2020]. [5] M. L. Scheuer, S. B. Wilson, A. Antony, G. Ghearing, A. Urban, and A. I. Bagic, “Seizure Detection: Interreader Agreement and Detection Algorithm Assessments Using a Large Dataset,” J. Clin. Neurophysiol., 2020. [6] A. Harati, M. Golmohammadi, S. Lopez, I. Obeid, and J. Picone, “Improved EEG Event Classification Using Differential Energy,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium, 2015, pp. 1–4. [7] V. Shah, C. Campbell, I. Obeid, and J. Picone, “Improved Spatio-Temporal Modeling in Automated Seizure Detection using Channel-Dependent Posteriors,” Neurocomputing, 2021. [8] W. Tatum, A. Husain, S. Benbadis, and P. Kaplan, Handbook of EEG Interpretation. New York City, New York, USA: Demos Medical Publishing, 2007. [9] D. P. Bovet and C. Marco, Understanding the Linux Kernel, 3rd ed. O’Reilly Media, Inc., 2005. [10] V. Shah et al., “The Temple University Hospital Seizure Detection Corpus,” Front. Neuroinform., vol. 12, pp. 1–6, 2018. [11] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011. [12] J. Gotman, D. Flanagan, J. Zhang, and B. Rosenblatt, “Automatic seizure detection in the newborn: Methods and initial evaluation,” Electroencephalogr. Clin. Neurophysiol., vol. 103, no. 3, pp. 356–362, 1997.« less
  4. We present the first all-optical network, Baldur, to enable power-efficient and high-speed communications in future exascale computing systems. The essence of Baldur is its ability to perform packet routing on-the-fly in the optical domain using an emerging technology called the transistor laser (TL), which presents interesting opportunities and challenges at the system level. Optical packet switching readily eliminates many inefficiencies associated with the crossings between optical and electrical domains. However, TL gates consume high power at the current technology node, which makes TL-based buffering and optical clock recovery impractical. Consequently, we must adopt novel (bufferless and clock-less) architecture and design approaches that are substantially different from those used in current networks. At the architecture level, we support a bufferless design by turning to techniques that have fallen out of favor for current networks. Baldur uses a low-radix, multi-stage network with a simple routing algorithm that drops packets to handle congestion, and we further incorporate path multiplicity and randomness to minimize packet drops. This design also minimizes the number of TL gates needed in each switch. At the logic design level, a non-conventional, length-based data encoding scheme is used to eliminate the need for clock recovery. We thoroughly validate and evaluatemore »Baldur using a circuit simulator and a network simulator. Our results show that Baldur achieves up to 3,000X lower average latency while consuming 3.2X-26.4X less power than various state-of-the art networks under a wide variety of traffic patterns and real workloads, for the scale of 1,024 server nodes. Baldur is also highly scalable, since its power per node stays relatively constant as we increase the network size to over 1 million server nodes, which corresponds to 14.6X-31.0X power improvements compared to state-of-the-art networks at this scale.« less
  5. Hybrid organic–inorganic perovskites (HOIPs) have become an important class of semiconductors for solar cells and other optoelectronic applications. Electron–phonon coupling plays a critical role in all optoelectronic devices, and although the lattice dynamics and phonon frequencies of HOIPs have been well studied, little attention has been given to phonon lifetimes. We report high-precision momentum-resolved measurements of acoustic phonon lifetimes in the hybrid perovskite methylammonium lead iodide (MAPI), using inelastic neutron spectroscopy to provide high-energy resolution and fully deuterated single crystals to reduce incoherent scattering from hydrogen. Our measurements reveal extremely short lifetimes on the order of picoseconds, corresponding to nanometer mean free paths and demonstrating that acoustic phonons are unable to dissipate heat efficiently. Lattice-dynamics calculations using ab initio third-order perturbation theory indicate that the short lifetimes stem from strong three-phonon interactions and a high density of low-energy optical phonon modes related to the degrees of freedom of the organic cation. Such short lifetimes have significant implications for electron–phonon coupling in MAPI and other HOIPs, with direct impacts on optoelectronic devices both in the cooling of hot carriers and in the transport and recombination of band edge carriers. These findings illustrate a fundamental difference between HOIPs and conventional photovoltaic semiconductorsmore »and demonstrate the importance of understanding lattice dynamics in the effort to develop metal halide perovskite optoelectronic devices.

    « less