skip to main content


Title: Seeing Learning Sciences Research as Modeling
Researchers in the Learning Sciences take two prevalent stances: research as building theories or as developing designs. The connection between theories and designs is most often filled in by methods, but an alternative stance is possible: research as improving models. The modeling stance seeks parsimonious, useful, illuminating descriptions of learning activity systems. Models can help us understand and express how variability (in all its forms) plays into, is enacted during, and results from designed learning activities. Building models often requires employing multiple theories, methods, and design elements; a modeling stance recognizes that our research often elaborates a multi-level systems view. An explicit modeling stance may lead to developing descriptions of complex systems, inviting multi-stakeholder teamwork to improve these systems, integrating advances in learning analytics and educational data mining, and adding to ability of learning sciences research to tackle challenges at scale.  more » « less
Award ID(s):
2021159
NSF-PAR ID:
10276958
Author(s) / Creator(s):
Editor(s):
de Vries, E; Hod, Y; Ahn, J
Date Published:
Journal Name:
International Conference of the Learning Sciences
Page Range / eLocation ID:
737-740
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    There is a growing understanding that cross‐sector risks faced by critical infrastructure assets in natural disasters require a collaborative foresight from multiple disciplines. However, current contributions to infrastructure interdependency analysis remain centered in discipline‐specific methodologies often constrained by underlying theories and assumptions. This perspective article contributes to ongoing discussions about the uses, challenges, and opportunities provided by interdisciplinary research in critical infrastructure interdependency analysis. In doing so, several modes of integration of computational modeling with contributions from the social sciences and other disciplines are explored to advance knowledge that can improve the infrastructure system resilience under extreme events. Three basic modes of method integration are identified and discussed: (a) integrating engineering models and social science research, (b) engaging communities in participative and collaborative forms of social learning and problem solving using simulation models to facilitate synthesis, exploration, and evaluation of scenarios, and (c) developing interactive simulations where IT systems and humans act as “peers” leveraging the capacity of distributed networked platforms and human‐in‐the‐loop architectures for improving situational awareness, real‐time decision making, and response capabilities in natural disasters. Depending on the conceptualization of the issues under investigation, these broadly defined modes of integration can coalesce to address key issues in promoting interdisciplinary research by outlining potential areas of future inquiry that would be most beneficial to the critical infrastructure protection communities.

     
    more » « less
  2. Hydrological systems in the Anthropocene have shown substantial shifts from their natural processes due to human modifications. Consequently, deploying coupled human-water modeling is a critical tool to analyze observed changes. However, the development of socio-hydrological models often requires extensive qualitative data collection in the field and analysis. Despite the advances in developing inter-disciplinary methodologies in utilizing qualitative data for coupled human-water modeling, there is a need to identify influential parameters in these systems to inform data collection. Here, we present an exploratory socio-hydrological model to systemically investigate the feedback system of public infrastructure providers, resource users, and the dynamics of water scarcity at the catchment scale to inform data collection and analysis in the field. Specifically, we propose a novel socio-hydrological model by employing and integrating a top-down hydrological model and an extension of Aqua.MORE Model (an Agent-Based Model designed to simulate dynamics of water supply and demand). Specifically, we model alternate behavioral theories of human decision-making to represent the agents" behavior. Then, we perform sensitivity analysis techniques to identify key socio-economic and behavioral parameters affecting emergence patterns in a stylized human-dominated catchment. We apply the proposed methodology to the Lake Mendocino Watershed in Northern California, US. The results will potentially point which parameters are influential and how they could be mapped to a particular interview or survey question. This study will help us to identify features of decision-making behavior for inclusion in fieldwork, that be might be overlooked in the absence of the proposed modeling. We anticipate that the proposed approach also contributes to the current Panta Rhei Research Initiative of the International Association of Hydrological Sciences (IAHS) which aims at improving the interpretation of the hydrological processes governing the socio-hydrological systems by focusing on their changing dynamics in connection with rapidly changing human systems. 
    more » « less
  3. null (Ed.)
    The nexus of food, energy, and water systems (FEWS) has become a salient research topic, as well as a pressing societal and policy challenge. Computational modeling is a key tool in addressing these challenges, and FEWS modeling as a subfield is now established. However, social dimensions of FEWS nexus issues, such as individual or social learning, technology adoption decisions, and adaptive behaviors, remain relatively underdeveloped in FEWS modeling and research. Agent-based models (ABMs) have received increasing usage recently in efforts to better represent and integrate human behavior into FEWS research. A systematic review identified 29 articles in which at least two food, energy, or water sectors were explicitly considered with an ABM and/or ABM-coupled modeling approach. Agent decision-making and behavior ranged from reactive to active, motivated by primarily economic objectives to multi-criteria in nature, and implemented with individual-based to highly aggregated entities. However, a significant proportion of models did not contain agent interactions, or did not base agent decision-making on existing behavioral theories. Model design choices imposed by data limitations, structural requirements for coupling with other simulation models, or spatial and/or temporal scales of application resulted in agent representations lacking explicit decision-making processes or social interactions. In contrast, several methodological innovations were also noted, which were catalyzed by the challenges associated with developing multi-scale, cross-sector models. Several avenues for future research with ABMs in FEWS research are suggested based on these findings. The reviewed ABM applications represent progress, yet many opportunities for more behaviorally rich agent-based modeling in the FEWS context remain. 
    more » « less
  4. Obeid, Iyad Selesnick (Ed.)
    Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEG channel separately. We use the hypotheses generated by the P1 model and create additional features that carry information about the detected events and their confidence. The P2 model uses these additional features and the LFCC features to learn the temporal and spatial aspects of the EEG signals using a hybrid convolutional neural network (CNN) and LSTM model. Finally, Phase 3 aggregates the results from both P1 and P2 before applying a final postprocessing step. The online system implements Phase 1 by taking advantage of the Linux piping mechanism, multithreading techniques, and multi-core processors. To convert Phase 1 into an online system, we divide the system into five major modules: signal preprocessor, feature extractor, event decoder, postprocessor, and visualizer. The system reads 0.1-second frames from each EEG channel and sends them to the feature extractor and the visualizer. The feature extractor generates LFCC features in real time from the streaming EEG signal. Next, the system computes seizure and background probabilities using a channel-based LSTM model and applies a postprocessor to aggregate the detected events across channels. The system then displays the EEG signal and the decisions simultaneously using a visualization module. The online system uses C++, Python, TensorFlow, and PyQtGraph in its implementation. The online system accepts streamed EEG data sampled at 250 Hz as input. The system begins processing the EEG signal by applying a TCP montage [8]. Depending on the type of the montage, the EEG signal can have either 22 or 20 channels. To enable the online operation, we send 0.1-second (25 samples) length frames from each channel of the streamed EEG signal to the feature extractor and the visualizer. Feature extraction is performed sequentially on each channel. The signal preprocessor writes the sample frames into two streams to facilitate these modules. In the first stream, the feature extractor receives the signals using stdin. In parallel, as a second stream, the visualizer shares a user-defined file with the signal preprocessor. This user-defined file holds raw signal information as a buffer for the visualizer. The signal preprocessor writes into the file while the visualizer reads from it. Reading and writing into the same file poses a challenge. The visualizer can start reading while the signal preprocessor is writing into it. To resolve this issue, we utilize a file locking mechanism in the signal preprocessor and visualizer. Each of the processes temporarily locks the file, performs its operation, releases the lock, and tries to obtain the lock after a waiting period. The file locking mechanism ensures that only one process can access the file by prohibiting other processes from reading or writing while one process is modifying the file [9]. The feature extractor uses circular buffers to save 0.3 seconds or 75 samples from each channel for extracting 0.2-second or 50-sample long center-aligned windows. The module generates 8 absolute LFCC features where the zeroth cepstral coefficient is replaced by a temporal domain energy term. For extracting the rest of the features, three pipelines are used. The differential energy feature is calculated in a 0.9-second absolute feature window with a frame size of 0.1 seconds. The difference between the maximum and minimum temporal energy terms is calculated in this range. Then, the first derivative or the delta features are calculated using another 0.9-second window. Finally, the second derivative or delta-delta features are calculated using a 0.3-second window [6]. The differential energy for the delta-delta features is not included. In total, we extract 26 features from the raw sample windows which add 1.1 seconds of delay to the system. We used the Temple University Hospital Seizure Database (TUSZ) v1.2.1 for developing the online system [10]. The statistics for this dataset are shown in Table 1. A channel-based LSTM model was trained using the features derived from the train set using the online feature extractor module. A window-based normalization technique was applied to those features. In the offline model, we scale features by normalizing using the maximum absolute value of a channel [11] before applying a sliding window approach. Since the online system has access to a limited amount of data, we normalize based on the observed window. The model uses the feature vectors with a frame size of 1 second and a window size of 7 seconds. We evaluated the model using the offline P1 postprocessor to determine the efficacy of the delayed features and the window-based normalization technique. As shown by the results of experiments 1 and 4 in Table 2, these changes give us a comparable performance to the offline model. The online event decoder module utilizes this trained model for computing probabilities for the seizure and background classes. These posteriors are then postprocessed to remove spurious detections. The online postprocessor receives and saves 8 seconds of class posteriors in a buffer for further processing. It applies multiple heuristic filters (e.g., probability threshold) to make an overall decision by combining events across the channels. These filters evaluate the average confidence, the duration of a seizure, and the channels where the seizures were observed. The postprocessor delivers the label and confidence to the visualizer. The visualizer starts to display the signal as soon as it gets access to the signal file, as shown in Figure 1 using the “Signal File” and “Visualizer” blocks. Once the visualizer receives the label and confidence for the latest epoch from the postprocessor, it overlays the decision and color codes that epoch. The visualizer uses red for seizure with the label SEIZ and green for the background class with the label BCKG. Once the streaming finishes, the system saves three files: a signal file in which the sample frames are saved in the order they were streamed, a time segmented event (TSE) file with the overall decisions and confidences, and a hypotheses (HYP) file that saves the label and confidence for each epoch. The user can plot the signal and decisions using the signal and HYP files with only the visualizer by enabling appropriate options. For comparing the performance of different stages of development, we used the test set of TUSZ v1.2.1 database. It contains 1015 EEG records of varying duration. The any-overlap performance [12] of the overall system shown in Figure 2 is 40.29% sensitivity with 5.77 FAs per 24 hours. For comparison, the previous state-of-the-art model developed on this database performed at 30.71% sensitivity with 6.77 FAs per 24 hours [3]. The individual performances of the deep learning phases are as follows: Phase 1’s (P1) performance is 39.46% sensitivity and 11.62 FAs per 24 hours, and Phase 2 detects seizures with 41.16% sensitivity and 11.69 FAs per 24 hours. We trained an LSTM model with the delayed features and the window-based normalization technique for developing the online system. Using the offline decoder and postprocessor, the model performed at 36.23% sensitivity with 9.52 FAs per 24 hours. The trained model was then evaluated with the online modules. The current performance of the overall online system is 45.80% sensitivity with 28.14 FAs per 24 hours. Table 2 summarizes the performances of these systems. The performance of the online system deviates from the offline P1 model because the online postprocessor fails to combine the events as the seizure probability fluctuates during an event. The modules in the online system add a total of 11.1 seconds of delay for processing each second of the data, as shown in Figure 3. In practice, we also count the time for loading the model and starting the visualizer block. When we consider these facts, the system consumes 15 seconds to display the first hypothesis. The system detects seizure onsets with an average latency of 15 seconds. Implementing an automatic seizure detection model in real time is not trivial. We used a variety of techniques such as the file locking mechanism, multithreading, circular buffers, real-time event decoding, and signal-decision plotting to realize the system. A video demonstrating the system is available at: https://www.isip.piconepress.com/projects/nsf_pfi_tt/resources/videos/realtime_eeg_analysis/v2.5.1/video_2.5.1.mp4. The final conference submission will include a more detailed analysis of the online performance of each module. ACKNOWLEDGMENTS Research reported in this publication was most recently supported by the National Science Foundation Partnership for Innovation award number IIP-1827565 and the Pennsylvania Commonwealth Universal Research Enhancement Program (PA CURE). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the official views of any of these organizations. REFERENCES [1] A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (EEG) classification tasks: a review,” J. Neural Eng., vol. 16, no. 3, p. 031001, 2019. https://doi.org/10.1088/1741-2552/ab0ab5. [2] A. C. Bridi, T. Q. Louro, and R. C. L. Da Silva, “Clinical Alarms in intensive care: implications of alarm fatigue for the safety of patients,” Rev. Lat. Am. Enfermagem, vol. 22, no. 6, p. 1034, 2014. https://doi.org/10.1590/0104-1169.3488.2513. [3] M. Golmohammadi, V. Shah, I. Obeid, and J. Picone, “Deep Learning Approaches for Automatic Seizure Detection from Scalp Electroencephalograms,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York, New York, USA: Springer, 2020, pp. 233–274. https://doi.org/10.1007/978-3-030-36844-9_8. [4] “CFM Olympic Brainz Monitor.” [Online]. Available: https://newborncare.natus.com/products-services/newborn-care-products/newborn-brain-injury/cfm-olympic-brainz-monitor. [Accessed: 17-Jul-2020]. [5] M. L. Scheuer, S. B. Wilson, A. Antony, G. Ghearing, A. Urban, and A. I. Bagic, “Seizure Detection: Interreader Agreement and Detection Algorithm Assessments Using a Large Dataset,” J. Clin. Neurophysiol., 2020. https://doi.org/10.1097/WNP.0000000000000709. [6] A. Harati, M. Golmohammadi, S. Lopez, I. Obeid, and J. Picone, “Improved EEG Event Classification Using Differential Energy,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium, 2015, pp. 1–4. https://doi.org/10.1109/SPMB.2015.7405421. [7] V. Shah, C. Campbell, I. Obeid, and J. Picone, “Improved Spatio-Temporal Modeling in Automated Seizure Detection using Channel-Dependent Posteriors,” Neurocomputing, 2021. [8] W. Tatum, A. Husain, S. Benbadis, and P. Kaplan, Handbook of EEG Interpretation. New York City, New York, USA: Demos Medical Publishing, 2007. [9] D. P. Bovet and C. Marco, Understanding the Linux Kernel, 3rd ed. O’Reilly Media, Inc., 2005. https://www.oreilly.com/library/view/understanding-the-linux/0596005652/. [10] V. Shah et al., “The Temple University Hospital Seizure Detection Corpus,” Front. Neuroinform., vol. 12, pp. 1–6, 2018. https://doi.org/10.3389/fninf.2018.00083. [11] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011. https://dl.acm.org/doi/10.5555/1953048.2078195. [12] J. Gotman, D. Flanagan, J. Zhang, and B. Rosenblatt, “Automatic seizure detection in the newborn: Methods and initial evaluation,” Electroencephalogr. Clin. Neurophysiol., vol. 103, no. 3, pp. 356–362, 1997. https://doi.org/10.1016/S0013-4694(97)00003-9. 
    more » « less
  5. Background: The field of mathematics education has made progress toward generating a set of instructional practices that could support improvements in the learning opportunities made available to groups of students who historically have been underserved and marginalized. Studies that contribute to this growing body of work are often conducted in learning environments that are framed as “successful.” As a researcher who is concerned with issues of equity and who acknowledges the importance of closely attending to the quality of the mathematical activity in which students are being asked to engage, my stance on “successful learning environments” pulls from both Gutiérrez’s descriptions of what characterizes classrooms as aiming for equity and the emphasis on the importance of conceptually oriented goals for student learning that is outlined in documents like the Standards. Though as a field we are growing in our knowledge of practices that support these successful learning environments, this knowledge has not yet been reflected in many of the observational tools, rubrics, and protocols used to study these environments. In addition, there is a growing need to develop empirically grounded ways of attending to the extent to which the practices that are being outlined in research literature actually contribute to the “success” of these learning environments. Purpose: The purpose of this article is to explore one way of meeting this growing need by describing the complex work of developing a set of classroom observation rubrics (the Equity and Access Rubrics for Mathematics Instruction, EAR-MI) designed to support efforts in identifying and observing critical features of classrooms characterized as having potential for “success.” In developing the rubrics, I took as my starting place findings from an analysis that compared a set of classrooms that were characterized as demonstrating aspects of successful learning environments and a set of classrooms that were not characterized as successful. This paper not only describes the process of developing the rubrics, but also outlines some of the qualitative differences that distinguished more and less effective examples of the practices the rubrics are designed to capture. Research Design: In designing the rubrics, I engaged in multiple cycles of qualitative analyses of video data collected from a large-scale study. Specifically, I iteratively designed, tested, and revised the developing rubrics while consistently collaborating with, consulting with, and receiving feedback from different experts in the field of education. Conclusions: Although I fully acknowledge and recognize that there are several tensions and limitations of this work, I argue that developing rubrics like the EAR-MI is still worthwhile. One reason that I give for continuing these types of efforts is that it contributes to the work of breaking down forms of practice into components and identifying key aspects of specific practices that are critical for supporting student learning in ways that make potentially productive routines of action visible to and learnable by others, which may ultimately contribute to the development of more successful learning environments. I also argue that rubrics like the EAR-MI have the potential to support researchers in developing stronger evidence of the effectiveness of practices that prior research has identified as critical for marginalized students and in more accurately and concretely identifying and describing learning environments as having potential for “success.” 
    more » « less