skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Plasma and vacuolar membrane sphingolipidomes: composition and insights on the role of main molecular species
Abstract Lipid structures affect membrane biophysical properties such as thickness, stability, permeability, curvature, fluidity, asymmetry, and interdigitation, contributing to membrane function. Sphingolipids are abundant in plant endomembranes and plasma membranes (PMs) and comprise four classes: ceramides, hydroxyceramides, glucosylceramides, and glycosylinositolphosphoceramides (GIPCs). They constitute an array of chemical structures whose distribution in plant membranes is unknown. With the aim of describing the hydrophobic portion of sphingolipids, 18 preparations from microsomal (MIC), vacuolar (VM), PM, and detergent-resistant membranes (DRM) were isolated from Arabidopsis (Arabidopsis thaliana) leaves. Sphingolipid species, encompassing pairing of long-chain bases and fatty acids, were identified and quantified in these membranes. Sphingolipid concentrations were compared using univariate and multivariate analysis to assess sphingolipid diversity, abundance, and predominance across membranes. The four sphingolipid classes were present at different levels in each membrane: VM was enriched in glucosylceramides, hydroxyceramides, and GIPCs; PM in GIPCs, in agreement with their key role in signal recognition and sensing; and DRM in GIPCs, as reported by their function in nanodomain formation. While a total of 84 sphingolipid species was identified in MIC, VM, PM, and DRM, only 34 were selectively distributed in the four membrane types. Conversely, every membrane contained a different number of predominant species (11 in VM, 6 in PM, and 17 in DRM). This study reveals that MIC, VM, PM, and DRM contain the same set of sphingolipid species but every membrane source contains its own specific assortment based on the proportion of sphingolipid classes and on the predominance of individual species.  more » « less
Award ID(s):
1818297
PAR ID:
10277095
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Plant Physiology
Volume:
186
Issue:
1
ISSN:
0032-0889
Page Range / eLocation ID:
624 to 639
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Salehi-Ashtiani, Kourosh (Ed.)
    Sphingolipids are a vital component of plant cellular endomembranes and carry out multiple functional and regulatory roles. Different sphingolipid species confer rigidity to the membrane structure, facilitate trafficking of secretory proteins, and initiate programmed cell death. Although the regulation of the sphingolipid pathway is yet to be uncovered, increasing evidence has pointed to orosomucoid proteins (ORMs) playing a major regulatory role and potentially interacting with a number of components in the pathway, including both enzymes and sphingolipids. However, experimental exploration of new regulatory interactions is time consuming and often infeasible. In this work, a computational approach was taken to address this challenge. A metabolic network of the sphingolipid pathway in plants was reconstructed. The steady-state rates of reactions in the network were then determined through measurements of growth and cellular composition of the different sphingolipids in Arabidopsis seedlings. The Ensemble modeling framework was modified to accurately account for activation mechanisms and subsequently used to generate sets of kinetic parameters that converge to the measured steady-state fluxes in a thermodynamically consistent manner. In addition, the framework was appended with an additional module to automate screening the parameters and to output models consistent with previously reported network responses to different perturbations. By analyzing the network’s response in the presence of different combinations of regulatory mechanisms, the model captured the experimentally observed repressive effect of ORMs on serine palmitoyltransferase (SPT). Furthermore, predictions point to a second regulatory role of ORM proteins, namely as an activator of class II (or LOH1 and LOH3) ceramide synthases. This activating role was found to be modulated by the concentration of free ceramides, where an accumulation of these sphingolipid species dampened the activating effect of ORMs on ceramide synthase. The predictions pave the way for future guided experiments and have implications in engineering crops with higher biotic stress tolerance. 
    more » « less
  2. The lipid matrix in cell membranes is a dynamic, bidimensional array of amphipathic molecules exhibiting mesomorphism, which contributes to the membrane fluidity changes in response to temperature fluctuation. As sessile organisms, plants must rapidly and accurately respond to environmental thermal variations. However, mechanisms underlying temperature perception in plants are poorly understood. We studied the thermal plasticity of membrane fluidity using three fluorescent probes across a temperature range of −5 to 41 °C in isolated microsomal fraction (MF), vacuolar membrane (VM), and plasma membrane (PM) vesicles from Arabidopsis plants. Results showed that PM were highly fluid and exhibited more phase transitions and hysteresis, while VM and MF lacked such attributes. These findings suggest that PM is an important cell hub with the capacity to rapidly undergo fluidity modifications in response to small changes of temperatures in ranges spanning those experienced in natural habitats. PM fluidity behaves as an ideal temperature detector: it is always present, covers the whole cell, responds quickly and with sensitivity to temperature variations, functions with a cell free-energy cost, and it is physically connected with potential thermal signal transducers to elicit a cell response. It is an optimal alternative for temperature detection selected for the plant kingdom. 
    more » « less
  3. Abstract Cellulose is an abundant component of plant cell wall matrices, and this para-crystalline polysaccharide is synthesized at the plasma membrane by motile Cellulose Synthase Complexes (CSCs). However, the factors that control CSC activity and motility are not fully resolved. In a targeted chemical screen, we identified the alkylated nojirimycin analog N-Dodecyl Deoxynojirimycin (ND-DNJ) as a small molecule that severely impacts Arabidopsis seedling growth. Previous work suggests that ND-DNJ-related compounds inhibit the biosynthesis of glucosylceramides (GlcCers), a class of glycosphingolipid associated with plant membranes. Our work uncovered major changes in the sphingolipidome of plants treated with ND-DNJ, including reductions in GlcCer abundance and altered acyl chain length distributions. Crystalline cellulose content was also reduced in ND-DNJ-treated plants as well as plants treated with the known GlcCer biosynthesis inhibitor N-[2-hydroxy-1-(4-morpholinylmethyl)-2-phenyl ethyl]-decanamide (PDMP) or plants containing a genetic disruption in GLUCOSYLCERAMIDE SYNTHASE (GCS), the enzyme responsible for sphingolipid glucosylation that results in GlcCer synthesis. Live-cell imaging revealed that CSC speed distributions were reduced upon treatment with ND-DNJ or PDMP, further suggesting an important relationship between glycosylated sphingolipid composition and CSC motility across the plasma membrane. These results indicate that multiple interventions compromising GlcCer biosynthesis disrupt cellulose deposition and CSC motility, suggesting that GlcCers regulate cellulose biosynthesis in plants. 
    more » « less
  4. The retromer is a heteromeric protein complex that localizes to endosomal membranes and drives the formation of endosomal tubules that recycle membrane protein cargoes. In plants, the retromer plays essential and canonical functions in regulating the transport of vacuolar storage proteins and the recycle of endocytosed plasma membrane proteins (PM); however, the mechanisms underlying the regulation of assembly, protein stability, and membrane recruitment of the plant retromer complex remain to be elucidated. In this study, we identify a plant-unique endosomal regulator termed BLISTER (BLI), which colocalizes and associates with the retromer complex by interacting with the retromer core subunits VPS35 and VPS29. Depletion of BLI perturbs the assembly and membrane recruitment of the retromer core VPS26-VPS35-VPS29 trimer. Consequently, depletion of BLI disrupts retromer-regulated endosomal trafficking function, including transport of soluble vacuolar proteins and recycling of endocytosed PIN-FORMED (PIN) proteins from the endosomes back to the PM. Moreover, genetic analysis in Arabidopsis thaliana mutants reveals BLI and core retromer interact genetically in the regulation of endosomal trafficking. Taken together, we identified BLI as a plant-specific endosomal regulator, which functions in retromer pathway to modulate the recycling of endocytosed PM proteins and the trafficking of soluble vacuolar cargoes. 
    more » « less
  5. Sphingolipids have long been of interest to the scientific community for their roles in eukaryotic cell structuring and disease pathology. Less is known about the occurrence and function of these diverse compounds in the bacterial domain of life, with most studies on bacterial sphingolipids focused on eukaryotic disease research and host-pathogen or host-symbiont interactions. Thus, bacterial contributions to environmental sphingolipid pools are poorly understood and the function of these lipids outside of pathogenicity remains largely unexplored. This report marks the first instance of sphingolipid production in a member of the phylum Acidobacteria, a globally ubiquitous phylum of soil bacteria. The occurrence of core- and intact-ceramides is reported for the AcidobacteriumSolibacter usitatusunder various environmentally relevant conditions. Shifts in the production of ceramides across temperature, pH, and oxygen gradients in this organism suggest that these compounds play a role in the physiological adaptation to environmental fluctuations. Additionally, the genetic basis of bacterial ceramide biosynthesis in this species is assessed and used to explore the potential for ceramide biosynthesis across the bacterial domain of life. The extent of the biosynthetic potential for Acidobacteria to produce ceramides coupled to the abundance of their genes in soil metagenomes suggests that soil sphingolipids should not be solely attributed to eukaryotic production. 
    more » « less