Open-domain question answering answers a
question based on evidence retrieved from
a large corpus. State-of-the-art neural approaches require intermediate evidence annotations for training. However, such intermediate annotations are expensive, and methods that rely on them cannot transfer to the
more common setting, where only question–
answer pairs are available. This paper investigates whether models can learn to find evidence from a large corpus, with only distant supervision from answer labels for model training, thereby generating no additional annotation cost. We introduce a novel approach
(DISTDR) that iteratively improves over a
weak retriever by alternately finding evidence
from the up-to-date model and encouraging
the model to learn the most likely evidence.
Without using any evidence labels, DISTDR
is on par with fully-supervised state-of-theart methods on both multi-hop and singlehop QA benchmarks. Our analysis confirms
that DISTDR finds more accurate evidence
over iterations, which leads to model improvements. The code is available at https://
github.com/henryzhao5852/DistDR.
more »
« less
Weakly-Supervised Open-Retrieval Conversational Question Answering
Recent work on Question Answering (QA) and Conversational QA (ConvQA) emphasizes the role of retrieval: a system first retrieves evidence from a large collection and then extracts answers. This open-retrieval setting typically assumes that each question is answerable by a single span of text within a particular passage (a span answer). The supervision signal is thus derived from whether or not the system can recover an exact match of this ground-truth answer span from the retrieved passages. This method is referred to as span-match weak supervision. However, information-seeking conversations are challenging for this span-match method since long answers, especially freeform answers, are not necessarily strict spans of any passage. Therefore, we introduce a learned weak supervision approach that can identify a paraphrased span of the known answer in a passage. Our experiments on QuAC and CoQA datasets show that although a span-match weak supervisor can handle conversations with span answers, it is not sufficient for freeform answers generated by people. We further demonstrate that our method is more flexible since it can handle both span answers and freeform answers. In particular, our method outperforms the span-match method on conversations with freeform answers, and it can be more powerful when combined with the span-match method. We also conduct in-depth analyses to show more insights on open-retrieval ConvQA under a weak supervision setting.
more »
« less
- Award ID(s):
- 1715095
- PAR ID:
- 10277182
- Date Published:
- Journal Name:
- Proceedings of the 43rd European Conference on Information Retrieval (ECIR 2021)
- Page Range / eLocation ID:
- 529-543
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
To build robust question answering systems, we need the ability to verify whether answers to questions are truly correct, not just “good enough” in the context of imperfect QA datasets. We explore the use of natural language inference (NLI) as a way to achieve this goal, as NLI inherently requires the premise (document context) to contain all necessary information to support the hypothesis (proposed answer to the question). We leverage large pre-trained models and recent prior datasets to construct powerful question conversion and decontextualization modules, which can reformulate QA instances as premise-hypothesis pairs with very high reliability. Then, by combining standard NLI datasets with NLI examples automatically derived from QA training data, we can train NLI models to evaluate QA models’ proposed answers. We show that our approach improves the confidence estimation of a QA model across different domains, evaluated in a selective QA setting. Careful manual analysis over the predictions of our NLI model shows that it can further identify cases where the QA model produces the right answer for the wrong reason, i.e., when the answer sentence cannot address all aspects of the question.more » « less
-
Information retrieval systems are evolving from document retrieval to answer retrieval. Web search logs provide large amounts of data about how people interact with ranked lists of documents, but very little is known about interaction with answer texts. In this paper, we use Amazon Mechanical Turk to investigate three answer presentation and interaction approaches in a non-factoid question answering setting. We find that people perceive and react to good and bad answers very differently, and can identify good answers relatively quickly. Our results provide the basis for further investigation of effective answer interaction and feedback methods.more » « less
-
Current question answering (QA) systems primarily consider the single-answer scenario, where each question is assumed to be paired with one correct answer. However, in many real-world QA applications, multiple answer scenarios arise where consolidating answers into a comprehensive and non-redundant set of answers is a more efficient user interface. In this paper, we formulate the problem of answer consolidation, where answers are partitioned into multiple groups, each representing different aspects of the answer set. Then, given this partitioning, a comprehensive and non-redundant set of answers can be constructed by picking one answer from each group. To initiate research on answer consolidation, we construct a dataset consisting of 4,699 questions and 24,006 sentences and evaluate multiple models. Despite a promising performance achieved by the best-performing supervised models, we still believe this task has room for further improvements.more » « less
-
null (Ed.)Conversational search is one of the ultimate goals of information retrieval. Recent research approaches conversational search by simplified settings of response ranking and conversational question answering, where an answer is either selected from a given candidate set or extracted from a given passage. These simplifications neglect the fundamental role of retrieval in conversational search. To address this limitation, we introduce an open-retrieval conversational question answering (ORConvQA) setting, where we learn to retrieve evidence from a large collection before extracting answers, as a further step towards building functional conversational search systems. We create a dataset, OR-QuAC, to facilitate research on ORConvQA. We build an end-to-end system for ORConvQA, featuring a retriever, a reranker, and a reader that are all based on Transformers. Our extensive experiments on OR-QuAC demonstrate that a learnable retriever is crucial for ORConvQA. We further show that our system can make a substantial improvement when we enable history modeling in all system components. Moreover, we show that the reranker component contributes to the model performance by providing a regularization effect. Finally, further in-depth analyses are performed to provide new insights into ORConvQA.more » « less