skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Can Agricultural Management Induced Changes in Soil Organic Carbon Be Detected Using Mid-Infrared Spectroscopy?
A major limitation to building credible soil carbon sequestration programs is the cost of measuring soil carbon change. Diffuse reflectance spectroscopy (DRS) is considered a viable low-cost alternative to traditional laboratory analysis of soil organic carbon (SOC). While numerous studies have shown that DRS can produce accurate and precise estimates of SOC across landscapes, whether DRS can detect subtle management induced changes in SOC at a given site has not been resolved. Here, we leverage archived soil samples from seven long-term research trials in the U.S. to test this question using mid infrared (MIR) spectroscopy coupled with the USDA-NRCS Kellogg Soil Survey Laboratory MIR spectral library. Overall, MIR-based estimates of SOC%, with samples scanned on a secondary instrument, were excellent with the root mean square error ranging from 0.10 to 0.33% across the seven sites. In all but two instances, the same statistically significant (p < 0.10) management effect was found using both the lab-based SOC% and MIR estimated SOC% data. Despite some additional uncertainty, primarily in the form of bias, these results suggest that large existing MIR spectral libraries can be operationalized in other laboratories for successful carbon monitoring.  more » « less
Award ID(s):
1832042
PAR ID:
10277303
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Remote Sensing
Volume:
13
Issue:
12
ISSN:
2072-4292
Page Range / eLocation ID:
2265
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract From hillslope to small catchment scales (< 50 km 2 ), soil carbon management and mitigation policies rely on estimates and projections of soil organic carbon (SOC) stocks. Here we apply a process-based modeling approach that parameterizes the MIcrobial-MIneral Carbon Stabilization (MIMICS) model with SOC measurements and remotely sensed environmental data from the Reynolds Creek Experimental Watershed in SW Idaho, USA. Calibrating model parameters reduced error between simulated and observed SOC stocks by 25%, relative to the initial parameter estimates and better captured local gradients in climate and productivity. The calibrated parameter ensemble was used to produce spatially continuous, high-resolution (10 m 2 ) estimates of stocks and associated uncertainties of litter, microbial biomass, particulate, and protected SOC pools across the complex landscape. Subsequent projections of SOC response to idealized environmental disturbances illustrate the spatial complexity of potential SOC vulnerabilities across the watershed. Parametric uncertainty generated physicochemically protected soil C stocks that varied by a mean factor of 4.4 × across individual locations in the watershed and a − 14.9 to + 20.4% range in potential SOC stock response to idealized disturbances, illustrating the need for additional measurements of soil carbon fractions and their turnover time to improve confidence in the MIMICS simulations of SOC dynamics. 
    more » « less
  2. Assessing soil organic carbon (SOC) stocks is crucial for understanding the carbon sequestration potential of agroecosystems and for mitigating climate change. This study presents a novel method for assessing SOC and mineral content at various soil depths in sorghum crops using hyperspectral remote sensing. Conducted at Planthaven Farms, MO, the research encompassed ten genotypes across 30 plots, yielding 180 soil samples from six depth intervals (0–150 cm) of bare soil. Chemical analyses determined the SOC and mineral levels, which were then compared to spectral data from HySpex indoor sensors. We utilized time-frequency analysis methods, including discrete wavelet transformation (DWT), continuous wavelet transformation (CWT), and frame transformation along with traditional spectral transformations, specifically fractional derivatives and continuum removal. The analysis revealed the shortwave infrared (SWIR) region, particularly the 1800–2000 nm range, as having the strongest correlations with SOC content (with R2 exceeding 0.8). The visible near-infrared (VNIR) region also provided valuable insights. Models incorporating CWT achieved high accuracy (test R2 exceeding 0.9), while frame transformation achieved strong accuracy (test R2 between 0.7 and 0.8) with fewer features. The random forest regressor (RFR) proved to be most robust, demonstrating superior accuracy and reduced overfitting compared to support vector regression (SVR), partial least squares regression (PLSR), and deep neural network (DNN) models. The models demonstrated the efficacy of hyperspectral data for SOC estimation, suggesting potential for future applications that integrate this data with above-ground biomass to improve SOC mapping across larger scales. This research offers a promising spectral transformation approach for effective carbon management and sustainable agriculture in a changing climate. 
    more » « less
  3. Abstract Global soil organic carbon (SOC) stocks may decline with a warmer climate. However, model projections of changes in SOC due to climate warming depend on microbially-driven processes that are usually parameterized based on laboratory incubations. To assess how lab-scale incubation datasets inform model projections over decades, we optimized five microbially-relevant parameters in the Microbial-ENzyme Decomposition (MEND) model using 16 short-term glucose (6-day), 16 short-term cellulose (30-day) and 16 long-term cellulose (729-day) incubation datasets with soils from forests and grasslands across contrasting soil types. Our analysis identified consistently higher parameter estimates given the short-term versus long-term datasets. Implementing the short-term and long-term parameters, respectively, resulted in SOC loss (–8.2 ± 5.1% or –3.9 ± 2.8%), and minor SOC gain (1.8 ± 1.0%) in response to 5 °C warming, while only the latter is consistent with a meta-analysis of 149 field warming observations (1.6 ± 4.0%). Comparing multiple subsets of cellulose incubations (i.e., 6, 30, 90, 180, 360, 480 and 729-day) revealed comparable projections to the observed long-term SOC changes under warming only on 480- and 729-day. Integrating multi-year datasets of soil incubations (e.g., > 1.5 years) with microbial models can thus achieve more reasonable parameterization of key microbial processes and subsequently boost the accuracy and confidence of long-term SOC projections. 
    more » « less
  4. Michael Kaiser (Ed.)
    By influencing soil organic carbon (SOC), cover crops play a key role in shaping soil health and hence the system's long‐term sustainability. However, the magnitude by which cover crops impacts SOC depends on multiple factors, including soil type, climate, crop rotation, tillage type, cover crop growth, and years under management. To elucidate how these multiple factors influence the relative impact of cover crops on SOC, we conducted a meta‐analysis on the impacts of cover crops within rotations that included corn (Zea maysL.) on SOC accumulation. Information on climatic conditions, soil characteristics, management, and cover crop performance was extracted, resulting in 198 paired comparisons from 61 peer‐reviewed studies. Over the course of each study, cover crops on average increased SOC by 7.3% (95% CI, 4.9%–9.6%). Furthermore, the impact of cover crop–induced increases in percent change SOC was evaluated across soil textures, cover crop types, crop rotations, biomass amounts, cover crop durations, tillage practices, and climatic zones. Our results suggest that current cover crop–based corn production systems are sequestering 5.5 million Mg of SOC per year in the United States and have the potential to sequester 175 million Mg SOC per year globally. These findings can be used to improve carbon footprint calculations and develop science‐based policy recommendations. Taken altogether, cover cropping is a promising strategy to sequester atmospheric C and hence make corn production systems more resilient to changing climates. 
    more » « less
  5. Abstract Soil erosion diminishes agricultural productivity by driving the loss of soil organic carbon (SOC). The ability to predict SOC redistribution is important for guiding sustainable agricultural practices and determining the influence of soil erosion on the carbon cycle. Here, we develop a landscape evolution model that couples soil mixing and transport to predict soil loss and SOC patterns within agricultural fields. Our reduced complexity numerical model requires the specification of only two physical parameters: a plow mixing depth,Lp, and a hillslope diffusion coefficient,D. Using topography as an input, the model predicts spatial patterns of surficial SOC concentrations and complex 3D SOC pedostratigraphy. We use soil cores from native prairies to determine initial SOC‐depth relations and the spatial pattern of remote sensing‐derived SOC in adjacent agricultural fields to evaluate the model predictions. The model reproduces spatial patterns of soil loss comparable to those observed in satellite images. Our results indicate that the distribution of soil erosion and SOC in agricultural fields can be predicted using a simple geomorphic model where hillslope diffusion plays a dominant role. Such predictions can aid estimates of carbon burial and evaluate the potential for future soil loss in agricultural landscapes. 
    more » « less