skip to main content

Title: Metagenomics and Quantitative Stable Isotope Probing Offer Insights into Metabolism of Polycyclic Aromatic Hydrocarbon Degraders in Chronically Polluted Seawater
ABSTRACT Bacterial biodegradation is a significant contributor to remineralization of polycyclic aromatic hydrocarbons (PAHs)—toxic and recalcitrant components of crude oil as well as by-products of partial combustion chronically introduced into seawater via atmospheric deposition. The Deepwater Horizon oil spill demonstrated the speed at which a seed PAH-degrading community maintained by chronic inputs responds to acute pollution. We investigated the diversity and functional potential of a similar seed community in the chronically polluted Port of Los Angeles (POLA), using stable isotope probing with naphthalene, deep-sequenced metagenomes, and carbon incorporation rate measurements at the port and in two sites in the San Pedro Channel. We demonstrate the ability of the community of degraders at the POLA to incorporate carbon from naphthalene, leading to a quick shift in microbial community composition to be dominated by the normally rare Colwellia and Cycloclasticus . We show that metagenome-assembled genomes (MAGs) belonged to these naphthalene degraders by matching their 16S-rRNA gene with experimental stable isotope probing data. Surprisingly, we did not find a full PAH degradation pathway in those genomes, even when combining genes from the entire microbial community, leading us to hypothesize that promiscuous dehydrogenases replace canonical naphthalene degradation enzymes in this site. We compared more » metabolic pathways identified in 29 genomes whose abundance increased in the presence of naphthalene to generate genomic-based recommendations for future optimization of PAH bioremediation at the POLA, e.g., ammonium as opposed to urea, heme or hemoproteins as an iron source, and polar amino acids. IMPORTANCE Oil spills in the marine environment have a devastating effect on marine life and biogeochemical cycles through bioaccumulation of toxic hydrocarbons and oxygen depletion by hydrocarbon-degrading bacteria. Oil-degrading bacteria occur naturally in the ocean, especially where they are supported by chronic inputs of oil or other organic carbon sources, and have a significant role in degradation of oil spills. Polycyclic aromatic hydrocarbons are the most persistent and toxic component of crude oil. Therefore, the bacteria that can break those molecules down are of particular importance. We identified such bacteria at the Port of Los Angeles (POLA), one of the busiest ports worldwide, and characterized their metabolic capabilities. We propose chemical targets based on those analyses to stimulate the activity of these bacteria in case of an oil spill in the Port POLA. « less
; ;
Rappe, Michael S.
Award ID(s):
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we present peak-cognizant quantification of environmental weathering of crude oil from the from the Deepwater Horizon oil spill. The key idea is to autonomously extract peak information from raw gas chromatography-mass spectrometry (GC-MS) signals from crude oil samples, and represent the relative weathering of different peaks in a graph-based quantitative computational framework. We also present results from pre-processing the raw signals with baseline correction and signal normalization. Retention time alignment is performed by first aligning the source oil by determining the retention time drift between prominent peaks within the signals and applying the calculated drift to the weathered oil samples. Peak finding, validation, and grouping of the five weathered oil samples to a source oil sample allows compound associations to be discovered. We present preliminary results as graphical visualizations allowing for rapid and precise interpretation of weathering compounds within polycyclic aromatic hydrocarbons (PAH). Results presented were generated with oil samples showing different degrees of weathering collected from the Deepwater Horizon spill.
  2. Summers, Zarath M. (Ed.)
    ABSTRACT Following oil spills in aquatic environments, oil-associated flocculants observed within contaminated waters ultimately lead to the sedimentation of oil as marine oil snow (MOS). To better understand the role of aggregates in hydrocarbon degradation and transport, we experimentally produced a MOS sedimentation event using Gulf of Mexico coastal waters amended with oil or oil plus dispersant. In addition to the formation of MOS, smaller micrometer-scale (10- to 150-μm) microbial aggregates were observed. Visual inspection of these microaggregates revealed that they were most abundant in the oil-amended treatments and frequently associated with oil droplets, linking their formation to the presence of oil. The peak abundance of the microaggregates coincided with the maximum rates of biological hydrocarbon oxidation estimated by the mineralization of 14 C-labeled hexadecane and naphthalene. To elucidate the potential of microaggregates to serve as hot spots for hydrocarbon degradation, we characterized the free-living and aggregate-associated microbial assemblages using 16S rRNA gene sequencing. The microaggregate population was found to be bacterially dominated and enriched with putative hydrocarbon-degrading taxa. Direct observation of some of these taxa using catalyzed reporter deposition fluorescence in situ hybridization confirmed their greater abundance within microaggregates relative to the surrounding seawater. Metagenomic sequencing of these bacteria-oilmore »microaggregates (BOMAs) further supported their community’s capacity to utilize a wide variety of hydrocarbon compounds. Taken together, these data highlight that BOMAs are inherent features in the biological response to oil spills and likely important hot spots for hydrocarbon oxidation in the ocean. IMPORTANCE Vast quantities of oil-associated marine snow (MOS) formed in the water column as part of the natural biological response to the Deepwater Horizon drilling accident. Despite the scale of the event, uncertainty remains about the mechanisms controlling MOS formation and its impact on the environment. In addition to MOS, we observed micrometer-scale (10- to 150-μm) aggregates whose abundance coincided with maximum rates of hydrocarbon degradation and whose composition was dominated by hydrocarbon-degrading bacteria with the genetic potential to metabolize a range of these compounds. This targeted study examining the role of these bacteria-oil microaggregates in hydrocarbon degradation reveals details of this fundamental component of the biological response to oil spills, and with it, alterations to biogeochemical cycling in the ocean.« less
  3. Seeps, spills and other oil pollution introduce hydrocarbons into the ocean. Marine cyanobacteria also produce hydrocarbons from fatty acids, but little is known about the size and turnover of this cyanobacterial hydrocarbon cycle. We report that cyanobacteria in an oligotrophic gyre mainly produce n-pentadecane and that microbial hydrocarbon production exhibits stratification and diel cycling in the sunlit surface ocean. Using chemical and isotopic tracing we find that pentadecane production mainly occurs in the lower euphotic zone. Using a multifaceted approach, we estimate that the global flux of cyanobacteria-produced pentadecane exceeds total oil input in the ocean by 100- to 500-fold. We show that rapid pentadecane consumption sustains a population of pentadecane-degrading bacteria, and possibly archaea. Our findings characterize a microbial hydrocarbon cycle in the open ocean that dwarfs oil input. We hypothesize that cyanobacterial hydrocarbon production selectively primes the ocean’s microbiome with long-chain alkanes whereas degradation of other petroleum hydrocarbons is controlled by factors including proximity to petroleum seepage.
  4. Abstract

    Co-contamination of hydrocarbons with heavy metals in soils often complicates and hinders bioremediation. A comprehensive characterization of site-specific degraders at contaminated sites can help determine if in situ bioremediation processes are sufficient. This study aimed to identify differences in benzene and toluene degradation rates and the microbial communities enriched under aerobic conditions when different concentrations of Cd and Pb are introduced. Microcosms were used to study the degradation of 0.23 mM benzene or 0.19 mM toluene under various concentrations of Pb (up to 240 µM) and Cd (up to 440 µM). Soil collected from a stormwater retention basin receiving runoff from a large parking lot was utilized to seed the microcosms. The hydrocarbon degradation time and rates were measured. After further rounds of amendment and degradation of benzene and toluene, 16S rRNA gene amplicon sequencing and quantitative PCR were used to ascertain the microbial communities enriched under the various concentrations of the heavy metals. The initial degradation time for toluene and benzene was 7 to 9 days and 10 to 13 days, respectively. Degradation rates were similar for each hydrocarbon despite the concentration and presence of metal co-contaminant, however, the enriched microbial communities under each condition differed. Microcosms without metal co-contaminant contained a diversity ofmore »putative benzene and toluene degrading bacteria. Cd strongly reduced the richness of the microbial communities. With higher levels of heavy metals, genera such asRalstonia,Cupriavidus,Azoarcus, andRhodococcusbecame more dominant under various conditions. The study finds that highly efficient benzene- and toluene-degrading consortia can develop under variations of heavy metal co-contamination, but the consortia are dependent on the heavy metal type and concentrations.

    « less
  5. Abstract

    Sediment-oil-agglomerates (SOA) are one of the most common forms of contamination impacting shores after a major oil spill; and following the Deepwater Horizon (DWH) accident, large numbers of SOAs were buried in the sandy beaches of the northeastern Gulf of Mexico. SOAs provide a source of toxic oil compounds, and although SOAs can persist for many years, their long-term fate was unknown. Here we report the results of a 3-yearin-situexperiment that quantified the degradation of standardized SOAs buried in the upper 50 cm of a North Florida sandy beach. Time series of hydrocarbon mass, carbon content, n-alkanes, PAHs, and fluorescence indicate that the decomposition of golf-ball-size DWH-SOAs embedded in beach sand takes at least 32 years, while SOA degradation without sediment contact would require more than 100 years. SOA alkane and PAH decay rates within the sediment were similar to those at the beach surface. The porous structure of the SOAs kept their cores oxygen-replete. The results reveal that SOAs buried deep in beach sands can be decomposed through relatively rapid aerobic microbial oil degradation in the tidally ventilated permeable beach sand, emphasizing the role of the sandy beach as an aerobic biocatalytical reactor at the land-ocean interface.