skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dipole patterns in tropical precipitation were pervasive across landmasses throughout Marine Isotope Stage 5
Abstract Most of Earth’s rain falls in the tropics, often in highly seasonal monsoon rains, which are thought to be coupled to the inter-hemispheric migrations of the Inter-Tropical Convergence Zone in response to the seasonal cycle of insolation. Yet characterization of tropical rainfall behaviour in the geologic past is poor. Here we combine new and existing hydroclimate records from six large-scale tropical regions with fully independent model-based rainfall reconstructions across the last interval of sustained warmth and ensuing climate cooling between 130 to 70 thousand years ago (Marine Isotope Stage 5). Our data-model approach reveals large-scale heterogeneous rainfall patterns in response to changes in climate. We note pervasive dipole-like tropical precipitation patterns, as well as different loci of precipitation throughout Marine Isotope Stage 5 than recorded in the Holocene. These rainfall patterns cannot be solely attributed to meridional shifts in the Inter-Tropical Convergence Zone.  more » « less
Award ID(s):
1634774
PAR ID:
10278012
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
2
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Earth's hydrological cycle is expected to intensify in response to global warming, with a “wet‐gets‐wetter, dry‐gets‐drier” response anticipated over the ocean. Subtropical regions (∼15°–30°N/S) are predicted to become drier, yet proxy evidence from past warm climates suggests these regions may be characterized by wetter conditions. Here we use an integrated data‐modeling approach to reconstruct global and zonal‐mean rainfall patterns during the early Eocene (∼56–48 million years ago). The Deep‐Time Model Intercomparison Project (DeepMIP) model ensemble indicates that the mid‐ (30°–60°N/S) and high‐latitudes (>60°N/S) are characterized by a thermodynamically dominated hydrological response to warming and overall wetter conditions. The tropical band (0°–15°N/S) is also characterized by wetter conditions, with several DeepMIP models simulating narrowing of the Inter‐Tropical Convergence Zone. However, the latter is not evident from the proxy data. The subtropics are characterized by negative precipitation‐evaporation anomalies (i.e., drier conditions) in the DeepMIP models, but there is surprisingly large inter‐model variability in mean annual precipitation (MAP). Intriguingly, we find that models with weaker meridional temperature gradients (e.g., CESM, GFDL) are characterized by a reduction in subtropical moisture divergence, leading to an increase in MAP. These model simulations agree more closely with our new proxy‐derived precipitation reconstructions and other key climate metrics and imply that the early Eocene was characterized by reduced subtropical moisture divergence. If the meridional temperature gradient was even weaker than suggested by those DeepMIP models, circulation‐induced changes may have outcompeted thermodynamic changes, leading to wetter subtropics. This highlights the importance of accurately reconstructing zonal temperature gradients when reconstructing past rainfall patterns. 
    more » « less
  2. Northern northeastern Brazil (NEB) is a climate change hotspot due to its high biological and social vulnerability to ongoing and future hydroclimate changes. Precipitation in this region is influenced by the Intertropical Convergence Zone (ITCZ), which is largely controlled by the strength of the Atlantic Meridional Overturning Circulation (AMOC). Accordingly, the projected weakening of the AMOC due to anthropogenic global warming may substantially change NEB hydroclimate. Heinrich Stadials (HS), past millennial-scale events during which the AMOC was significantly weaker, provide important insights into the AMOC-ITCZ dynamics. This is especially true for those HS that occurred under similar to modern boundary conditions. HS10 (ca. 110 thousand years ago) was the first HS of Marine Isotope Stage 5, providing an ideal target for investigating AMOC-ITCZ dynamics under relatively warm climate conditions. Here we investigate the response of the surface and deep western equatorial Atlantic (WEA) circulation, as well as NEB precipitation to HS10. Therefore, we use foraminiferal carbon and oxygen stable isotopes and bulk sediment major elemental data from a marine sediment core retrieved from the WEA. Our results record a weakening of the AMOC during HS10 and show a concurrent increased WEA upper stratification and precipitation over NEB. We suggest that the mechanism controlling the WEA upper ocean stratification during HS depends on the background climate. Furthermore, we infer that the southward shift of the ITCZ during HS10 was more limited if compared to the shifts that occurred under colder climate background. Our findings provide useful insights into how a weakening of the AMOC under a relatively warm climate can impact the ITCZ and tropical South American precipitation. 
    more » « less
  3. Abstract Understanding eastern African paleoclimate is critical for contextualizing early human evolution, adaptation, and dispersal, yet Pleistocene climate of this region and its governing mechanisms remain poorly understood due to the lack of long, orbitally-resolved, terrestrial paleoclimate records. Here we present leaf wax hydrogen isotope records of rainfall from paleolake sediment cores from key time windows that resolve long-term trends, variations, and high-latitude effects on tropical African precipitation. Eastern African rainfall was dominantly controlled by variations in low-latitude summer insolation during most of the early and middle Pleistocene, with little evidence that glacial–interglacial cycles impacted rainfall until the late Pleistocene. We observe the influence of high-latitude-driven climate processes emerging from the last interglacial (Marine Isotope Stage 5) to the present, an interval when glacial–interglacial cycles were strong and insolation forcing was weak. Our results demonstrate a variable response of eastern African rainfall to low-latitude insolation forcing and high-latitude-driven climate change, likely related to the relative strengths of these forcings through time and a threshold in monsoon sensitivity. We observe little difference in mean rainfall between the early, middle, and late Pleistocene, which suggests that orbitally-driven climate variations likely played a more significant role than gradual change in the relationship between early humans and their environment. 
    more » « less
  4. Abstract Overly smooth topography in general circulation models (GCMs) underestimates the blocking effect of the steep mountain ranges flanking the eastern Pacific. We explore the impact of this bias on common biases in Pacific climate simulation [i.e., the unrealistic cross-equatorial symmetry of near-surface winds, sea surface temperatures (SSTs), and precipitation] through sensitivity experiments with modified Central and/or South American topography in an atmosphere–ocean coupled GCM. Quantifying orographic blocking potential via the Froude number, we determine that an envelope topographic interpolation scheme best captures observed blocking patterns. Implementing envelope topography only in Central America reduced model biases as greater blocking of the trade winds warmed SST and enhanced convergence in the northeastern Pacific. Doing so additionally over the Andes improved the simulation of South Pacific circulation and the South Pacific convergence zone as stronger deflection of the westerlies intensified the South Pacific anticyclone. This mitigated convection biases in the southeast Pacific by increasing subsidence and cooling SST. However, remote impacts of the Andes exacerbated the dry bias in the northeast tropical Pacific, resulting in negligible improvement in the East Pacific double-ITCZ. We find that, due to the significant role of large-scale convergence in driving precipitation patterns, other model biases, such as cloud-radiative biases, may modulate the impact of altering topography. Our results highlight the importance of considering alternate methods for calculating model topographic boundary conditions, though the optimal interpolation scheme will vary with model resolution and the impact of topography on GCM biases can be sensitive to choices made in formulating parameterizations. Significance StatementIn this study, we explore how the mountain ranges spanning Central and South America shape the climate of the Pacific by blocking large-scale midlatitude and tropical winds. We show that the height of these mountains is typically too low in climate models and that elevating them can improve patterns of rainfall, surface ocean temperatures, and near-surface winds in the Pacific. This is important because model biases in the Pacific climate limit their utility for understanding current and future climate variability. Improving the representation of blocking by mountains can thus be a simple method for reducing uncertainties in future climate projections. 
    more » « less
  5. Some of the rainiest regions on Earth lie upstream of tropical mountains, where the interaction of prevailing winds with orography produces frequent precipitating convection. Yet the response of tropical orographic precipitation to the large-scale wind and temperature variations induced by anthropogenic climate change remains largely unconstrained. Here, we quantify the sensitivity of tropical orographic precipitation to background cross-slope wind using theory, idealized simulations, and observations. We build on a recently developed theoretical framework that characterizes the orographic enhancement of seasonal mean precipitation, relative to upstream regions, as a response of convection to cooling and moistening of the lower free troposphere by stationary orographic gravity waves. Using this framework and convection-permitting simulations, we show that higher cross-slope wind speeds deepen the penetration of the cool and moist gravity wave perturbation upstream of orography, resulting in a mean rainfall increase of 20 % (m s−1)−1 to 30 % (m s−1)−1 increase in cross-slope wind speed. Additionally, we show that orographic precipitation in five tropical regions exhibits a similar dependence on changes in cross-slope wind at both seasonal and daily timescales. Given next-century changes in large-scale winds around tropical orography projected by global climate models, this strong scaling rate implies wind-induced changes in some of Earth's rainiest regions that are comparable with any produced directly by increases in global mean temperature and humidity. 
    more » « less