skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-resolution and high-precision correlation of dark and light layers in the Quaternary hemipelagic sediments of the Japan Sea recovered during IODP Expedition 346
More Like this
  1. Several effective methods have been developed recently to demonstrate simultaneous high energy and high power density in Lithium - carbon fluoride (Li-CFx) batteries. These methods can achieve as high as a 1000 Wh/kg energy density at a 60–70 kW/kg power density (40–50 C rate) in coin cells and a 750 Wh/kg energy density at a 12.5 kW/kg power density (20 C rate) in pouch cells. This performance is made possible by an ingenious nano-architecture design, controlled porosity, boron doping, and electrolyte additives. In the present study, we show that a similarly great performance, a 931 Wh/kg energy density at a 59 kW/kg power density, can be achieved by using a polyacrylonitrile binder and a LiBF4 electrolyte in Li-graphite fluoride coin cells. We also demonstrate that the observed effect is the result of the right combination of the binder and the electrolyte. We propose that the mechanistic origin of the observed phenomena is an electro-catalytic effect of the polyacrylonitrile binder. While our proposed method has a competitive performance, it also offers a simple implementation and a scalable production of high-energy and high-power primary Li-CFx cells. 
    more » « less
  2. Abstract High‐temperature calorimetry (HTC) originated in the 20th century as a niche method to enable measurements not easily accomplished with acid solution calorimetry, combustion calorimetry, vapor pressure, or EMF methods. Over time, HTC has evolved into a versatile approach to accurately quantify formation, phase transition, surface and interfacial enthalpies of a wide range of materials including minerals and refractory inorganic compounds. This evolution has been the result of numerous adjustments to experimental setups and procedures, followed by rigorous testing. The commercial availability and the scientific success of this technique have led to an increase in the number of laboratories applying HTC. However, the knowledge acquired by researchers over the past 70 years is scattered throughout the literature or only available as laboratory internal documentation and personal experience. This publication is a collaborative effort among several leading HTC laboratories to summarize and unify current state‐of‐the‐art HTC techniques and procedures. The text starts by summarizing various HT techniques that are commonly used for readers with an interest in HTC in general. It is then directed toward HTC users and includes a brief section on data evaluation procedures as well as a comprehensive compilation of reference data utilizing molten sodium molybdate and lead borate solvents. Finally, for experienced HTC users, an in‐depth discussion of some common difficulties and a discussion of uncertainties are presented. 
    more » « less
  3. Vernet, Joël R; Bryant, Julia J; Motohara, Kentaro (Ed.)
  4. Abstract Convective available potential energy (CAPE) is of strong interest in climate modeling because of its role in both severe weather and in model construction. Extreme levels of CAPE (>2000 J kg −1 ) are associated with high-impact weather events, and CAPE is widely used in convective parameterizations to help determine the strength and timing of convection. However, to date few studies have systematically evaluated CAPE biases in models in a climatological context, and none have addressed bias in the high tail of CAPE distributions. This work compares CAPE distributions in ~200 000 summertime proximity soundings from four sources: the observational radiosonde network [Integrated Global Radiosonde Archive (IGRA)], 0.125° reanalyses (ERA-Interim and ERA5), and a 4-km convection-permitting regional WRF simulation driven by ERA-Interim. Both reanalyses and the WRF Model consistently show too-narrow distributions of CAPE, with the high tail (>90th percentile) systematically biased low by up to 10% in surface-based CAPE and even more in alternate CAPE definitions. This “missing tail” corresponds to the most impacts-relevant conditions. CAPE bias in all datasets is driven by surface temperature and humidity: reanalyses and the WRF Model underpredict observed cases of extreme heat and moisture. These results suggest that reducing inaccuracies in land surface and boundary layer models is critical for accurately reproducing CAPE. 
    more » « less