skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1435266

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Speleothem CaCO3δ18O is a commonly employed paleomonsoon proxy. However, inferring local rainfall amount from speleothem δ18O can be complicated due to changing source water δ18O, temperature effects, and rainout over the moisture transport path. These complications are addressed using δ18O of planktonic foraminiferal CaCO3, offshore from the Yangtze River Valley (YRV). The advantage is that the effects of global seawater δ18O and local temperature changes can be quantitatively removed, yielding a record of local seawater δ18O, a proxy that responds primarily to dilution by local precipitation and runoff. Whereas YRV speleothem δ18O is dominated by precession-band (23 ky) cyclicity, local seawater δ18O is dominated by eccentricity (100 ky) and obliquity (41 ky) cycles, with almost no precession-scale variance. These results, consistent with records outside the YRV, suggest that East Asian monsoon rainfall is more sensitive to greenhouse gas and high-latitude ice sheet forcing than to direct insolation forcing. 
    more » « less
  2. Abstract Late Pleistocene changes in insolation, greenhouse gas concentrations, and ice sheets have different spatially and seasonally modulated climatic fingerprints. By exploring the seasonality of paleoclimate proxy data, we gain deeper insight into the drivers of climate changes. Here, we investigate changes in alkenone-based annual mean and Globigerinoides ruber Mg/Ca-based summer sea surface temperatures in the East China Sea and their linkages to climate forcing over the past 400,000 years. During interglacial-glacial cycles, there are phase differences between annual mean and seasonal (summer and winter) temperatures, which relate to seasonal insolation changes. These phase differences are most evident during interglacials. During glacial terminations, temperature changes were strongly affected by CO 2 . Early temperature minima, ~20,000 years before glacial terminations, except the last glacial period, coincide with the largest temperature differences between summer and winter, and with the timing of the lowest atmospheric CO 2 concentration. These findings imply the need to consider proxy seasonality and seasonal climate variability to estimate climate sensitivity. 
    more » « less
  3. null (Ed.)