During the COVID-19 pandemic, local news organizations have played an important role in keeping communities informed about the spread and impact of the virus. We explore how political, social media, and economic factors impacted the way local media reported on COVID-19 developments at a national scale between January 2020 and July 2021. We construct and make available a dataset of over 10,000 local news organizations and their social media handles across the U.S. We use social media data to estimate the population reach of outlets (their “localness”), and capture underlying content relationships between them. Building on this data, we analyze how local and national media covered four key COVID-19 news topics: Statistics and Case Counts, Vaccines and Testing, Public Health Guidelines, and Economic Effects. Our results show that news outlets with higher population reach reported proportionally more on COVID-19 than more local outlets. Separating the analysis by topic, we expose more nuanced trends, for example that outlets with a smaller population reach covered the Statistics and Case Counts topic proportionally more, and the Economic Effects topic proportionally less. Our analysis further shows that people engaged proportionally more and used stronger reactions when COVID-19 news were posted by outlets with a smaller population reach. Finally, we demonstrate that COVID-19 posts in Republican-leaning counties generally received more comments and fewer likes than in Democratic counties, perhaps indicating controversy.
more »
« less
A Case Study on using Unstructured Data Analysis Methods to identify local Covid-19 Hotspots
The purpose of this work is to use unstructured data analysis methods to identify Covid-19 hotspots within local communities using publicly-available health and socioeconomic data. Consequently, a detailed analysis showing which local communities are most impacted by Covid-19 in the North Florida region is conducted based on zip code profiling. This work contributes to the knowledge and discovery of the impact of Covid19 on lower income communities.
more »
« less
- Award ID(s):
- 1824267
- PAR ID:
- 10278138
- Date Published:
- Journal Name:
- SoutheastCon 2021
- Page Range / eLocation ID:
- 1 to 4
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Public transit is central to cultivating equitable communities. Meanwhile, the novel coronavirus disease COVID-19 and associated social restrictions has radically transformed ridership behavior in urban areas. Perhaps the most concerning aspect of the COVID-19 pandemic is that low-income and historically marginalized groups are not only the most susceptible to economic shifts but are also most reliant on public transportation. As revenue decreases, transit agencies are tasked with providing adequate public transportation services in an increasingly hostile economic environment. Transit agencies therefore have two primary concerns. First, how has COVID-19 impacted ridership and what is the new post-COVID normal? Second, how has ridership varied spatio-temporally and between socio-economic groups? In this work we provide a data-driven analysis of COVID-19’s affect on public transit operations and identify temporal variation in ridership change. We then combine spatial distributions of ridership decline with local economic data to identify variation between socio-economic groups. We find that in Nashville and Chattanooga, TN, fixed-line bus ridership dropped by 66.9% and 65.1% from 2019 baselines before stabilizing at 48.4% and 42.8% declines respectively. The largest declines were during morning and evening commute time. Additionally, there was a significant difference in ridership decline between the highest-income areas and lowest-income areas (77% vs 58%) in Nashville.more » « less
-
null (Ed.)Public transit is central to cultivating equitable communities. Meanwhile, the novel coronavirus disease COVID-19 and associated social restrictions has radically transformed ridership behavior in urban areas. Perhaps the most concerning aspect of the COVID-19 pandemic is that low-income and historically marginalized groups are not only the most susceptible to economic shifts but are also most reliant on public transportation. As revenue decreases, transit agencies are tasked with providing adequate public transportation services in an increasingly hostile economic environment. Transit agencies therefore have two primary concerns. First, how has COVID-19 impacted ridership and what is the new post-COVID normal? Second, how has ridership varied spatio-temporally and between socio-economic groups? In this work we provide a data-driven analysis of COVID-19’s affect on public transit operations and identify temporal variation in ridership change. We then combine spatial distributions of ridership decline with local economic data to identify variation between socio-economic groups. We find that in Nashville and Chattanooga, TN, fixed-line bus ridership dropped by 66.9% and 65.1% from 2019 baselines before stabilizing at 48.4% and 42.8% declines respectively. The largest declines were during morning and evening commute time. Additionally, there was a significant difference in ridership decline between the highest-income areas and lowest-income areas (77% vs 58%) in Nashville.more » « less
-
The uneven spread of COVID-19 has resulted in disparate experiences for marginalized populations in urban centers. Using computational models, we examine the effects of local cohesion on COVID-19 spread in social contact networks for the city of San Francisco, finding that more early COVID-19 infections occur in areas with strong local cohesion. This spatially correlated process tends to affect Black and Hispanic communities more than their non-Hispanic White counterparts. Local social cohesion thus acts as a potential source of hidden risk for COVID-19 infection.more » « less
-
This study explored how population mobility flows form commuting networks across US counties and influence the spread of COVID-19. We utilized 3-level mixed effects negative binomial regression models to estimate the impact of network COVID-19 exposure on county confirmed cases and deaths over time. We also conducted weighting-based analyses to estimate the causal effect of network exposure. Results showed that commuting networks matter for COVID-19 deaths and cases, net of spatial proximity, socioeconomic, and demographic factors. Different local racial and ethnic concentrations are also associated with unequal outcomes. These findings suggest that commuting is an important causal mechanism in the spread of COVID-19 and highlight the significance of interconnected of communities. The results suggest that local level mitigation and prevention efforts are more effective when complemented by similar efforts in the network of connected places. Implications for research on inequality in health and flexible work arrangements are discussed.more » « less
An official website of the United States government

