Near‐infrared (NIR) fluorescent dyes with favorable photophysical properties are highly useful for bioimaging, but such dyes are still rare. The development of a unique class of NIR dyes via modifying the rhodol scaffold with fused tetrahydroquinoxaline rings is described. These new dyes showed large Stokes shifts (>110 nm). Among them, WR3, WR4, WR5, and WR6 displayed high fluorescence quantum yields and excellent photostability in aqueous solutions. Moreover, their fluorescence properties were tunable by easy modifications on the phenolic hydroxy group. Based on WR6, two NIR fluorescent turn‐on probes, WSP‐NIR and SeSP‐NIR, were devised for the detection of H2S. The probe SeSP‐NIR was applied in visualizing intracellular H2S. These dyes are expected to be useful fluorophore scaffolds in the development of new NIR probes for bioimaging.
- Award ID(s):
- 1708759
- PAR ID:
- 10278331
- Date Published:
- Journal Name:
- Organic & Biomolecular Chemistry
- Volume:
- 18
- Issue:
- 30
- ISSN:
- 1477-0520
- Page Range / eLocation ID:
- 5747 to 5763
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Near‐infrared (NIR) fluorescent dyes with favorable photophysical properties are highly useful for bioimaging, but such dyes are still rare. The development of a unique class of NIR dyes via modifying the rhodol scaffold with fused tetrahydroquinoxaline rings is described. These new dyes showed large Stokes shifts (>110 nm). Among them, WR3, WR4, WR5, and WR6 displayed high fluorescence quantum yields and excellent photostability in aqueous solutions. Moreover, their fluorescence properties were tunable by easy modifications on the phenolic hydroxy group. Based on WR6, two NIR fluorescent turn‐on probes, WSP‐NIR and SeSP‐NIR, were devised for the detection of H2S. The probe SeSP‐NIR was applied in visualizing intracellular H2S. These dyes are expected to be useful fluorophore scaffolds in the development of new NIR probes for bioimaging.
-
Abstract Molecular biologists rely on the use of fluorescent probes to take measurements of their model systems. These fluorophores fall into various classes (e.g. fluorescent dyes, fluorescent proteins, etc.), but they all share some general properties (such as excitation and emission spectra, brightness) and require similar equipment for data acquisition. Selecting an ideal set of fluorophores for a particular measurement technology or vice versa is a multidimensional problem that is difficult to solve with ad hoc methods due to the enormous solution space of possible fluorophore panels. Choosing sub-optimal fluorophore panels can result in unreliable or erroneous measurements of biochemical properties in model systems. Here, we describe a set of algorithms, implemented in an open-source software tool, for solving these problems efficiently to arrive at fluorophore panels optimized for maximal signal and minimal bleed-through.
-
Abstract Small molecular NIR‐II dyes are highly desirable for various biomedical applications. However, NIR‐II probes are still limited due to the complex synthetic processes and inadequate availability of fluorescent core. Herein, the design and synthesis of three small molecular NIR‐II dyes are reported. These dyes can be excited at 850–915 nm and emitted at 1280–1290 nm with a large stokes shift (≈375 nm). Experimental and computational results indicate a 2:1 preferable host–guest assembly between the cucurbit[8]uril (CB) and dye molecules. Interestingly, the dyes when self‐assembled in presence of CB leads to the formation of nanocubes (≈200 nm) and exhibits marked enhancement in fluorescence emission intensity (Switch‐On). However, the addition of red carbon dots (rCDots, ≈10 nm) quenches the fluorescence of these host–guest complexes (Switch‐Off) providing flexibility in the user‐defined tuning of photoluminescence. The turn‐ON complex found to have comparable quantum yield to the commercially available near‐infrared fluorophore, IR‐26. The aqueous dispersibility, cellular and blood compatibility, and NIR‐II bioimaging capability of the inclusion complexes is also explored. Thus, a switchable fluorescence behavior, driven by host–guest complexation and supramolecular self‐assembly, is demonstrated here for three new NIR‐II dyes.
-
Protein-DNA binding interactions are critical in several biological processes, especially the regulation of gene expression at the level of transcription initiation. An important technique for studying these interactions is the electrophoretic mobility shift assay (EMSA), whereby protein-DNA complexes are resolved on the basis of their mass:charge ratio using native polyacrylamide gel electrophoresis (nPAGE). Here we describe EMSA using PCR-generated, near infrared-fluorescent DNA probes, and IR fluorescence imaging to qualitatively and quantitatively study the interaction of transcriptional regulatory proteins from thermophilic organisms with different DNAs. Direct imaging of IR fluorophore-labeled DNA probes is advantageous because it provides high sensitivity (subnanomolar) without the need for intermediate staining steps or costly and problematic radiolabeled probes, thereby providing a more affordable and sensitive option to image protein-DNA on polyacrylamide gels by techniques such as EMSA.more » « less