skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Small Molecule NIR‐II Dyes for Switchable Photoluminescence via Host –Guest Complexation and Supramolecular Assembly with Carbon Dots
Abstract

Small molecular NIR‐II dyes are highly desirable for various biomedical applications. However, NIR‐II probes are still limited due to the complex synthetic processes and inadequate availability of fluorescent core. Herein, the design and synthesis of three small molecular NIR‐II dyes are reported. These dyes can be excited at 850–915 nm and emitted at 1280–1290 nm with a large stokes shift (≈375 nm). Experimental and computational results indicate a 2:1 preferable host–guest assembly between the cucurbit[8]uril (CB) and dye molecules. Interestingly, the dyes when self‐assembled in presence of CB leads to the formation of nanocubes (≈200 nm) and exhibits marked enhancement in fluorescence emission intensity (Switch‐On). However, the addition of red carbon dots (rCDots, ≈10 nm) quenches the fluorescence of these host–guest complexes (Switch‐Off) providing flexibility in the user‐defined tuning of photoluminescence. The turn‐ON complex found to have comparable quantum yield to the commercially available near‐infrared fluorophore, IR‐26. The aqueous dispersibility, cellular and blood compatibility, and NIR‐II bioimaging capability of the inclusion complexes is also explored. Thus, a switchable fluorescence behavior, driven by host–guest complexation and supramolecular self‐assembly, is demonstrated here for three new NIR‐II dyes.

 
more » « less
PAR ID:
10370109
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Volume:
9
Issue:
22
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The combination of multiple orthogonal interactions enables hierarchical complexity in self‐assembled nanoscale materials. Here, efficient supramolecular polymerization of DNA origami nanostructures is demonstrated using a multivalent display of small molecule host–guest interactions. Modification of DNA strands with cucurbit[7]uril (CB[7]) and its adamantane guest, yielding a supramolecular complex with an affinity of order 1010m−1, directs hierarchical assembly of origami monomers into 1D nanofibers. This affinity regime enables efficient polymerization; a lower‐affinity β‐cyclodextrin–adamantane complex does not promote extended structures at a similar valency. Finally, the utility of the high‐affinity CB[7]–adamantane interactions is exploited to enable responsive enzymatic actuation of origami nanofibers assembled using peptide linkers. This work demonstrates the power of high‐affinity CB[7]–guest recognition as an orthogonal axis to drive self‐assembly in DNA nanotechnology.

     
    more » « less
  2. Abstract

    We report the synthesis and X‐ray crystal structure of a cucurbituril–triptycene chimeric receptor (1). Host1binds to guests typical of CB[6]–CB[8], but also binds to larger guests such as blue box (20) and the Fujita square (22). Intriguingly, the geometries of the120and122complexes blur the lines between host and guest in that both components fulfill both roles within each complex. The fluorescence output of1is fully quenched by the formation of complexes with pyridinium‐derived guests.

     
    more » « less
  3. Abstract

    We report the synthesis and X‐ray crystal structure of a cucurbituril–triptycene chimeric receptor (1). Host1binds to guests typical of CB[6]–CB[8], but also binds to larger guests such as blue box (20) and the Fujita square (22). Intriguingly, the geometries of the120and122complexes blur the lines between host and guest in that both components fulfill both roles within each complex. The fluorescence output of1is fully quenched by the formation of complexes with pyridinium‐derived guests.

     
    more » « less
  4. Abstract

    Cucurbit[n]urils (CB[n]s) are cyclic macrocycles with rich host‐guest chemistry. In many cases, guest binding in CB[n]s results in host structural deformations. Unfortunately, measuring such deformations remains a major challenge, with only a handful of manual estimations reported in the literature. To address this challenge, we have developed the public program ElliptiCB[n], which is available on GitHub, that provides a robust and automated method for measuring the elliptical deformations in CB[n] hosts. We outline the development and validation of this approach, apply ElliptiCB[n] to measure the ellipticity of the 1113 available CB[n] structures from the Cambridge Structural Database (CSD), and directly investigate the structural deformations of CB[5], CB[6], CB[7], CB[8], and CB[10] hosts. We also report the general landscape of accessible CB[n] elliptical deformations and compare ellipticity distributions across CB[n] hosts and host‐guest complexes. We found that in almost all cases guest binding significantly impacts the distribution of host ellipticity distributions and that these distributions are dissimilar across host‐guest complexes of differently sized CB[n]s. We anticipate that this work will provide a useful approach for understanding of the flexibility of CB[n] hosts and will also enable future measurement and standardization of ellipticity measurements of CB[n]s.

     
    more » « less
  5. Abstract

    Near‐infrared (NIR) fluorescent dyes with favorable photophysical properties are highly useful for bioimaging, but such dyes are still rare. The development of a unique class of NIR dyes via modifying the rhodol scaffold with fused tetrahydroquinoxaline rings is described. These new dyes showed large Stokes shifts (>110 nm). Among them, WR3, WR4, WR5, and WR6 displayed high fluorescence quantum yields and excellent photostability in aqueous solutions. Moreover, their fluorescence properties were tunable by easy modifications on the phenolic hydroxy group. Based on WR6, two NIR fluorescent turn‐on probes, WSP‐NIR and SeSP‐NIR, were devised for the detection of H2S. The probe SeSP‐NIR was applied in visualizing intracellular H2S. These dyes are expected to be useful fluorophore scaffolds in the development of new NIR probes for bioimaging.

     
    more » « less