skip to main content


Title: Small Molecule NIR‐II Dyes for Switchable Photoluminescence via Host –Guest Complexation and Supramolecular Assembly with Carbon Dots
Abstract

Small molecular NIR‐II dyes are highly desirable for various biomedical applications. However, NIR‐II probes are still limited due to the complex synthetic processes and inadequate availability of fluorescent core. Herein, the design and synthesis of three small molecular NIR‐II dyes are reported. These dyes can be excited at 850–915 nm and emitted at 1280–1290 nm with a large stokes shift (≈375 nm). Experimental and computational results indicate a 2:1 preferable host–guest assembly between the cucurbit[8]uril (CB) and dye molecules. Interestingly, the dyes when self‐assembled in presence of CB leads to the formation of nanocubes (≈200 nm) and exhibits marked enhancement in fluorescence emission intensity (Switch‐On). However, the addition of red carbon dots (rCDots, ≈10 nm) quenches the fluorescence of these host–guest complexes (Switch‐Off) providing flexibility in the user‐defined tuning of photoluminescence. The turn‐ON complex found to have comparable quantum yield to the commercially available near‐infrared fluorophore, IR‐26. The aqueous dispersibility, cellular and blood compatibility, and NIR‐II bioimaging capability of the inclusion complexes is also explored. Thus, a switchable fluorescence behavior, driven by host–guest complexation and supramolecular self‐assembly, is demonstrated here for three new NIR‐II dyes.

 
more » « less
NSF-PAR ID:
10370109
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Volume:
9
Issue:
22
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The combination of multiple orthogonal interactions enables hierarchical complexity in self‐assembled nanoscale materials. Here, efficient supramolecular polymerization of DNA origami nanostructures is demonstrated using a multivalent display of small molecule host–guest interactions. Modification of DNA strands with cucurbit[7]uril (CB[7]) and its adamantane guest, yielding a supramolecular complex with an affinity of order 1010m−1, directs hierarchical assembly of origami monomers into 1D nanofibers. This affinity regime enables efficient polymerization; a lower‐affinity β‐cyclodextrin–adamantane complex does not promote extended structures at a similar valency. Finally, the utility of the high‐affinity CB[7]–adamantane interactions is exploited to enable responsive enzymatic actuation of origami nanofibers assembled using peptide linkers. This work demonstrates the power of high‐affinity CB[7]–guest recognition as an orthogonal axis to drive self‐assembly in DNA nanotechnology.

     
    more » « less
  2. Abstract

    We report the synthesis and X‐ray crystal structure of a cucurbituril–triptycene chimeric receptor (1). Host1binds to guests typical of CB[6]–CB[8], but also binds to larger guests such as blue box (20) and the Fujita square (22). Intriguingly, the geometries of the120and122complexes blur the lines between host and guest in that both components fulfill both roles within each complex. The fluorescence output of1is fully quenched by the formation of complexes with pyridinium‐derived guests.

     
    more » « less
  3. Abstract

    We report the synthesis and X‐ray crystal structure of a cucurbituril–triptycene chimeric receptor (1). Host1binds to guests typical of CB[6]–CB[8], but also binds to larger guests such as blue box (20) and the Fujita square (22). Intriguingly, the geometries of the120and122complexes blur the lines between host and guest in that both components fulfill both roles within each complex. The fluorescence output of1is fully quenched by the formation of complexes with pyridinium‐derived guests.

     
    more » « less
  4. Abstract

    The DNA tensegrity triangle is known to reliably self‐assemble into a 3D rhombohedral crystalline lattice via sticky‐end cohesion. Here, the library of accessible motifs is expanded through covalent extensions of intertriangle regions and sticky‐end‐coordinated linkages of adjacent triangles with double helical segments using both geometrically symmetric and asymmetric configurations. The molecular structures of 18 self‐assembled architectures at resolutions of 3.32–9.32 Å are reported; the observed cell dimensions, cavity sizes, and cross‐sectional areas agree with theoretical expectations. These data demonstrate that fine control over triclinic and rhombohedral crystal parameters and the customizability of more complex 3D DNA lattices are attainable via rational design. It is anticipated that augmented DNA architectures may be fine‐tuned for the self‐assembly of designer nanocages, guest–host complexes, and proscriptive 3D nanomaterials, as originally envisioned. Finally, designer asymmetric crystalline building blocks can be seen as a first step toward controlling and encoding information in three dimensions.

     
    more » « less
  5. Hydrogels prepared from supramolecular cross-linking motifs are appealing for use as biomaterials and drug delivery technologies. The inclusion of macromolecules (e.g., protein therapeutics) in these materials is relevant to many of their intended uses. However, the impact of dynamic network cross-linking on macromolecule diffusion must be better understood. Here, hydrogel networks with identical topology but disparate cross-link dynamics are explored. These materials are prepared from cross-linking with host–guest complexes of the cucurbit[7]uril (CB[7]) macrocycle and two guests of different affinity. Rheology confirms differences in bulk material dynamics arising from differences in cross-link thermodynamics. Fluorescence recovery after photobleaching (FRAP) provides insight into macromolecule diffusion as a function of probe molecular weight and hydrogel network dynamics. Together, both rheology and FRAP enable the estimation of the mean network mesh size, which is then related to the solute hydrodynamic diameters to further understand macromolecule diffusion. Interestingly, the thermodynamics of host–guest cross-linking are correlated with a marked deviation from classical diffusion behavior for higher molecular weight probes, yielding solute aggregation in high-affinity networks. These studies offer insights into fundamental macromolecular transport phenomena as they relate to the association dynamics of supramolecular networks. Translation of these materials from in vitro to in vivo is also assessed by bulk release of an encapsulated macromolecule. Contradictory in vitro to in vivo results with inverse relationships in release between the two hydrogels underscores the caution demanded when translating supramolecular biomaterials into application. 
    more » « less