Abstract The combustion of fossil fuels is currently causing rapid rates of ocean warming and acidification worldwide. Projected changes in these parameters have been repeatedly observed to stress the physiological limits and plasticity of many marine species from the molecular to organismal levels. High latitude oceans are among the fastest changing ecosystems; therefore, polar species are projected to be some of the most vulnerable to climate change. Antarctic species are particularly sensitive to environmental change, having evolved for millions of years under stable ocean conditions. Otoliths, calcified structures found in a fish’s inner ear used to sense movement and direction, have been shown to be affected by both warming and CO 2 -acidified seawater in temperate and tropical fishes but there is no work to date on Antarctic fishes. In this study, juvenile emerald rockcod ( Trematomus bernacchii ) were exposed to projected seawater warming and CO 2 -acidification for the year 2100 over 28 days. Sagittal otoliths were analyzed for changes in area, perimeter, length, width and shape. We found ocean warming increased the growth rate of otoliths, while CO 2 -acidified seawater and the interaction of warming and acidification did not have an effect on otolith development. Elevated temperature also altered the shape of otoliths. If otolith development is altered under future warming scenarios, sensory functions such as hearing, orientation, and movement may potentially be impaired. Changes in these basic somatic abilities could have broad implications for the general capabilities and ecology of early life stages of Antarctic fishes.
more »
« less
Understanding the Metabolic Capacity of Antarctic Fishes to Acclimate to Future Ocean Conditions
Synopsis Antarctic fishes have evolved under stable, extreme cold temperatures for millions of years. Adapted to thrive in the cold environment, their specialized phenotypes will likely render them particularly susceptible to future ocean warming and acidification as a result of climate change. Moving from a period of stability to one of environmental change, species persistence will depend on maintaining energetic equilibrium, or sustaining the increased energy demand without compromising important biological functions such as growth and reproduction. Metabolic capacity to acclimate, marked by a return to metabolic equilibrium through physiological compensation of routine metabolic rate (RMR), will likely determine which species will be better poised to cope with shifts in environmental conditions. Focusing on the suborder Notothenioidei, a dominant group of Antarctic fishes, and in particular four well-studied species, Trematomus bernacchii, Pagothenia borchgrevinki, Notothenia rossii, and N. coriiceps, we discuss metabolic acclimation potential to warming and CO2-acidification using an integrative and comparative framework. There are species-specific differences in the physiological compensation of RMR during warming and the duration of acclimation time required to achieve compensation; for some species, RMR fully recovered within 3.5 weeks of exposure, such as P. borchgrevinki, while for other species, such as N. coriiceps, RMR remained significantly elevated past 9 weeks of exposure. In all instances, added exposure to increased PCO2, further compromised the ability of species to return RMR to pre-exposure levels. The period of metabolic imbalance, marked by elevated RMR, was underlined by energetic disturbance and elevated energetic costs, which shifted energy away from fitness-related functions, such as growth. In T. bernacchii and N. coriiceps, long duration of elevated RMR impacted condition factor and/or growth rate. Low growth rate can affect development and ultimately the timing of reproduction, severely compromising the species’ survival potential and the biodiversity of the notothenioid lineage. Therefore, the ability to achieve full compensation of RMR, and in a short-time frame, in order to avoid long term consequences of metabolic imbalance, will likely be an important determinant in a species’ capacity to persist in a changing environment. Much work is still required to develop our understanding of the bioenergetics of Antarctic fishes in the face of environmental change, and a targeted approach of nesting a mechanistic focus in an ecological and comparative framework will better aid our predictions on the effect of global climate change on species persistence in the polar regions.
more »
« less
- Award ID(s):
- 1744999
- PAR ID:
- 10278375
- Date Published:
- Journal Name:
- Integrative and Comparative Biology
- Volume:
- 60
- Issue:
- 6
- ISSN:
- 1540-7063
- Page Range / eLocation ID:
- 1425 to 1437
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Notothenioidei fishes have evolved under stable cold temperatures; however, ocean conditions are changing globally, with polar regions poised to experience the greatest changes in environmental factors, such as warming. These stressors have the potential to dramatically affect energetic demands, and the persistence of the notothenioids will be dependent on metabolic capacity, or the ability to match energy supply with energy demand, to restore homeostasis in the face of changing climate conditions. In this study we examined aerobic metabolic capacity in three species,Trematomus bernacchii,T. pennelliiandT. newnesi, and between two life stages, juvenile and adult, by assessing mitochondrial function of permeabilized cardiac fibers. Respiratory capacity differed among the adult notothenioids in this study, with greater oxidative phosphorylation (OXPHOS) respiration in the pelagicT. newnesithan the benthicT. bernacchiiandT. pennellii. The variation in mitochondrial respiratory capacity was likely driven by differences in the mitochondrial content, as measured by citrate synthase activity, which was the highest inT. newnesi. In addition to high OXPHOS,T. newnesiexhibited lower LEAK respiration, resulting in greater mitochondrial efficiency than eitherT. bernacchiiorT. pennellii. Life stage largely had an effect on mitochondrial efficiency and excess complex IV capacity, but there were little differences in OXPHOS respiration and electron transfer capacity, pointing to a lack of significant differences in the metabolic capacity between juveniles and adults. Overall, these results demonstrate species-specific differences in cardiac metabolic capacity, which may influence the acclimation potential of notothenioid fishes to changing environmental conditions.more » « less
-
Ocean acidification is occurring in conjunction with warming and deoxygenation as a result of anthropogenic greenhouse gas emissions. Multistressor experiments are critically needed to better understand the sensitivity of marine organisms to these concurrent changes. Growth and survival responses to acidification have been documented for many marine species, but studies that explore underlying physiological mechanisms of carbon dioxide (CO2) sensitivity are less common. We investigated oxygen consumption rates as proxies for metabolic responses in embryos and newly hatched larvae of an estuarine forage fish (Atlantic silverside, Menidia menidia) to factorial combinations of CO2×temperature or CO2×oxygen. Metabolic rates of embryos and larvae significantly increased with temperature, but partial pressure of CO2 (PCO2) alone did not affect metabolic rates in any experiment. However, there was a significant interaction between PCO2 and partial pressure of oxygen (PO2) in embryos, because metabolic rates were unaffected by PO2 level at ambient PCO2, but decreased with declining PO2 under elevated PCO2. For larvae, however, PCO2 and PO2 had no significant effect on metabolic rates. Our findings suggest high individual variability in metabolic responses to high PCO2, perhaps owing to parental effects and time of spawning. We conclude that early life metabolism is largely resilient to elevated PCO2 in this species, but that acidification likely influences energetic responses and thus vulnerability to hypoxia.more » « less
-
Abstract Variability in primary producers' responses to environmental change may buffer higher trophic levels against shifts in basal resource composition. Then again, in instances where there is a lack of functional redundancy because consumers rely on a few species to meet their energetic requirements at specific times of the year, altered community production dynamics may significantly impact food web resilience. In high‐latitude kelp forests, a complementary annual phenology of seaweed production supports coastal marine consumers' metabolic needs across large seasonal variations in their environment. Yet, marine consumers in these systems may face significant metabolic stress under the pronounced low pH conditions expected in future winters, particularly if they lack the resources to support their increased energetic demands. In this study, we investigate how the growth and nutritional value of three dominant, coexisting macroalgal species found in subpolar kelp forests will respond to ocean acidification and warming in future winter and summer seasons. We find that the three kelpsMacrocystis pyrifera,Hedophyllum nigripes, andNeoagarum fimbriatumdiffer in their vulnerability to future environmental conditions, and that the seasonal environmental context of nutrient and light availability shapes these responses. Our results suggest that poleward fringe populations ofM. pyriferamay be relatively resilient to anticipated ocean warming and acidification. In contrast, ocean warming conditions caused a decrease in the biomass and nutritional quality of both understory kelps. Considering the unique production phenology ofH. nigripes, we emphasize that negative impacts on this species in future winters may be of consequence to consumer energetics in this system. This work highlights how interspecific variation in autotrophs' responses to global change can disrupt the diversity and phenological structure of energy supply available to higher trophic levels.more » « less
-
Antarctic notothenioid fishes are noteworthy for their history of isolation and indications they lack the heat shock response. The mechanistic basis for stenothermy has not been fully elucidated, and some aspects of stenothermy could arise post-transcriptionally. Antarctic emerald rockcod (Trematomus bernacchii) were sampled after exposure to chronic and/or acute high temperatures, followed by assessment of proteomic responses in brain, gill, and kidney using tissue-specific DIA assay libraries. Few cellular stress response proteins were induced, and overall responses were modest in terms of numbers of differentially expressed proteins and their fold changes. Inconsistencies in protein induction across treatments and tissues are suggestive of dysregulation, rather than an adaptive response. Changes in regulation of translation in Antarctic notothenioids could explain these patterns. Some components of the “integrative stress response” that regulates translation are highly conserved (e.g., Ser-52 of eIF2α), but the eIF2α kinases GCN2 and PERK may have evolved along different trajectories in Antarctic fishes. Together, these observations suggest a novel hypothesis for stenothermy and the absence of a coordinated cellular stress response in Antarctic fishes.more » « less