skip to main content


Title: Using Network-Based Machine Learning to Predict Transcription Factors Involved in Drought Resistance
Gene regulatory networks underpin stress response pathways in plants. However, parsing these networks to prioritize key genes underlying a particular trait is challenging. Here, we have built the Gene Regulation and Association Network (GRAiN) of rice ( Oryza sativa ). GRAiN is an interactive query-based web-platform that allows users to study functional relationships between transcription factors (TFs) and genetic modules underlying abiotic-stress responses. We built GRAiN by applying a combination of different network inference algorithms to publicly available gene expression data. We propose a supervised machine learning framework that complements GRAiN in prioritizing genes that regulate stress signal transduction and modulate gene expression under drought conditions. Our framework converts intricate network connectivity patterns of 2160 TFs into a single drought score. We observed that TFs with the highest drought scores define the functional, structural, and evolutionary characteristics of drought resistance in rice. Our approach accurately predicted the function of OsbHLH148 TF, which we validated using in vitro protein-DNA binding assays and mRNA sequencing loss-of-function mutants grown under control and drought stress conditions. Our network and the complementary machine learning strategy lends itself to predicting key regulatory genes underlying other agricultural traits and will assist in the genetic engineering of desirable rice varieties.  more » « less
Award ID(s):
1826836
NSF-PAR ID:
10278478
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Frontiers in Genetics
Volume:
12
ISSN:
1664-8021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transcription factors (TFs) play a central role in regulating molecular level responses of plants to external stresses such as water limiting conditions, but identification of such TFs in the genome remains a challenge. Here, we describe a network-based supervised machine learning framework that accurately predicts and ranks all TFs in the genome according to their potential association with drought tolerance. We show that top ranked regulators fall mainly into two ‘age’ groups; genes that appeared first in land plants and genes that emerged later in the Oryza clade. TFs predicted to be high in the ranking belong to specific gene families, have relatively simple intron/exon and protein structures, and functionally converge to regulate primary and secondary metabolism pathways. Repeated trials of nested cross-validation tests showed that models trained only on regulatory network patterns, inferred from large transcriptome datasets, outperform models trained on heterogenous genomic features in the prediction of known drought response regulators. A new R/Shiny based web application, called the DroughtApp, provides a primer for generation of new testable hypotheses related to regulation of drought stress response. Furthermore, to test the system we experimentally validated predictions on the functional role of the rice transcription factor OsbHLH148, using RNA sequencing of knockout mutants in response to drought stress and protein-DNA interaction assays. Our study exemplifies the integration of domain knowledge for prioritization of regulatory genes in biological pathways of well-studied agricultural traits. 
    more » « less
  2. Nitrogen (N) and Water (W) - two resources critical for crop productivity – are becoming increasingly limited in soils globally. To address this issue, we aim to uncover the gene regulatory networks (GRNs) that regulate nitrogen use efficiency (NUE) - as a function of water availability - in Oryza sativa, a staple for 3.5 billion people. In this study, we infer and validate GRNs that correlate with rice NUE phenotypes affected by N-by-W availability in the field. We did this by exploiting RNA-seq and crop phenotype data from 19 rice varieties grown in a 2x2 N-by-W matrix in the field. First, to identify gene-to-NUE field phenotypes, we analyzed these datasets using weighted gene co-expression network analysis (WGCNA). This identified two network modules ("skyblue" & "grey60") highly correlated with NUE grain yield (NUEg). Next, we focused on 90 TFs contained in these two NUEg modules and predicted their genome-wide targets using the N-and/or-W response datasets using a random forest network inference approach (GENIE3). Next, to validate the GENIE3 TF→target gene predictions, we performed Precision/Recall Analysis (AUPR) using nine datasets for three TFs validated in planta . This analysis sets a precision threshold of 0.31, used to "prune" the GENIE3 network for high-confidence TF→target gene edges, comprising 88 TFs and 5,716 N-and/or-W response genes. Next, we ranked these 88 TFs based on their significant influence on NUEg target genes responsive to N and/or W signaling. This resulted in a list of 18 prioritized TFs that regulate 551 NUEg target genes responsive to N and/or W signals. We validated the direct regulated targets of two of these candidate NUEg TFs in a plant cell-based TF assay called TARGET, for which we also had in planta data for comparison. Gene ontology analysis revealed that 6/18 NUEg TFs - OsbZIP23 (LOC_Os02g52780), Oshox22 (LOC_Os04g45810), LOB39 (LOC_Os03g41330), Oshox13 (LOC_Os03g08960), LOC_Os11g38870, and LOC_Os06g14670 - regulate genes annotated for N and/or W signaling. Our results show that OsbZIP23 and Oshox22, known regulators of drought tolerance, also coordinate W-responses with NUEg. This validated network can aid in developing/breeding rice with improved yield on marginal, low N-input, drought-prone soils. 
    more » « less
  3. INTRODUCTION Neurons are by far the most diverse of all cell types in animals, to the extent that “cell types” in mammalian brains are still mostly heterogeneous groups, and there is no consensus definition of the term. The Drosophila optic lobes, with approximately 200 well-defined cell types, provides a tractable system with which to address the genetic basis of neuronal type diversity. We previously characterized the distinct developmental gene expression program of each of these types using single-cell RNA sequencing (scRNA-seq), with one-to-one correspondence to the known morphological types. RATIONALE The identity of fly neurons is determined by temporal and spatial patterning mechanisms in stem cell progenitors, but it remained unclear how these cell fate decisions are implemented and maintained in postmitotic neurons. It was proposed in Caenorhabditis elegans that unique combinations of terminal selector transcription factors (TFs) that are continuously expressed in each neuron control nearly all of its type-specific gene expression. This model implies that it should be possible to engineer predictable and complete switches of identity between different neurons just by modifying these sustained TFs. We aimed to test this prediction in the Drosophila visual system. RESULTS Here, we used our developmental scRNA-seq atlases to identify the potential terminal selector genes in all optic lobe neurons. We found unique combinations of, on average, 10 differentially expressed and stably maintained (across all stages of development) TFs in each neuron. Through genetic gain- and loss-of-function experiments in postmitotic neurons, we showed that modifications of these selector codes are sufficient to induce predictable switches of identity between various cell types. Combinations of terminal selectors jointly control both developmental (e.g., morphology) and functional (e.g., neurotransmitters and their receptors) features of neurons. The closely related Transmedullary 1 (Tm1), Tm2, Tm4, and Tm6 neurons (see the figure) share a similar code of terminal selectors, but can be distinguished from each other by three TFs that are continuously and specifically expressed in one of these cell types: Drgx in Tm1, Pdm3 in Tm2, and SoxN in Tm6. We showed that the removal of each of these selectors in these cell types reprograms them to the default Tm4 fate. We validated these conversions using both morphological features and molecular markers. In addition, we performed scRNA-seq to show that ectopic expression of pdm3 in Tm4 and Tm6 neurons converts them to neurons with transcriptomes that are nearly indistinguishable from that of wild-type Tm2 neurons. We also show that Drgx expression in Tm1 neurons is regulated by Klumpfuss, a TF expressed in stem cells that instructs this fate in progenitors, establishing a link between the regulatory programs that specify neuronal fates and those that implement them. We identified an intronic enhancer in the Drgx locus whose chromatin is specifically accessible in Tm1 neurons and in which Klu motifs are enriched. Genomic deletion of this region knocked down Drgx expression specifically in Tm1 neurons, leaving it intact in the other cell types that normally express it. We further validated this concept by demonstrating that ectopic expression of Vsx (visual system homeobox) genes in Mi15 neurons not only converts them morphologically to Dm2 neurons, but also leads to the loss of their aminergic identity. Our results suggest that selector combinations can be further sculpted by receptor tyrosine kinase signaling after neurogenesis, providing a potential mechanism for postmitotic plasticity of neuronal fates. Finally, we combined our transcriptomic datasets with previously generated chromatin accessibility datasets to understand the mechanisms that control brain wiring downstream of terminal selectors. We built predictive computational models of gene regulatory networks using the Inferelator framework. Experimental validations of these networks revealed how selectors interact with ecdysone-responsive TFs to activate a large and specific repertoire of cell surface proteins and other effectors in each neuron at the onset of synapse formation. We showed that these network models can be used to identify downstream effectors that mediate specific cellular decisions during circuit formation. For instance, reduced levels of cut expression in Tm2 neurons, because of its negative regulation by pdm3 , controls the synaptic layer targeting of their axons. Knockdown of cut in Tm1 neurons is sufficient to redirect their axons to the Tm2 layer in the lobula neuropil without affecting other morphological features. CONCLUSION Our results support a model in which neuronal type identity is primarily determined by a relatively simple code of continuously expressed terminal selector TFs in each cell type throughout development. Our results provide a unified framework of how specific fates are initiated and maintained in postmitotic neurons and open new avenues to understanding synaptic specificity through gene regulatory networks. The conservation of this regulatory logic in both C. elegans and Drosophila makes it likely that the terminal selector concept will also be useful in understanding and manipulating the neuronal diversity of mammalian brains. Terminal selectors enable predictive cell fate reprogramming. Tm1, Tm2, Tm4, and Tm6 neurons of the Drosophila visual system share a core set of TFs continuously expressed by each cell type (simplified). The default Tm4 fate is overridden by the expression of a single additional terminal selector to generate Tm1 ( Drgx ), Tm2 ( pdm3 ), or Tm6 ( SoxN ) fates. 
    more » « less
  4. ABSTRACT Gene regulatory networks (GRNs) are critical for dynamic transcriptional responses to environmental stress. However, the mechanisms by which GRN regulation adjusts physiology to enable stress survival remain unclear. Here we investigate the functions of transcription factors (TFs) within the global GRN of the stress-tolerant archaeal microorganism Halobacterium salinarum . We measured growth phenotypes of a panel of TF deletion mutants in high temporal resolution under heat shock, oxidative stress, and low-salinity conditions. To quantitate the noncanonical functional forms of the growth trajectories observed for these mutants, we developed a novel modeling framework based on Gaussian process regression and functional analysis of variance (FANOVA). We employ unique statistical tests to determine the significance of differential growth relative to the growth of the control strain. This analysis recapitulated known TF functions, revealed novel functions, and identified surprising secondary functions for characterized TFs. Strikingly, we observed that the majority of the TFs studied were required for growth under multiple stress conditions, pinpointing regulatory connections between the conditions tested. Correlations between quantitative phenotype trajectories of mutants are predictive of TF-TF connections within the GRN. These phenotypes are strongly concordant with predictions from statistical GRN models inferred from gene expression data alone. With genome-wide and targeted data sets, we provide detailed functional validation of novel TFs required for extreme oxidative stress and heat shock survival. Together, results presented in this study suggest that many TFs function under multiple conditions, thereby revealing high interconnectivity within the GRN and identifying the specific TFs required for communication between networks responding to disparate stressors. IMPORTANCE To ensure survival in the face of stress, microorganisms employ inducible damage repair pathways regulated by extensive and complex gene networks. Many archaea, microorganisms of the third domain of life, persist under extremes of temperature, salinity, and pH and under other conditions. In order to understand the cause-effect relationships between the dynamic function of the stress network and ultimate physiological consequences, this study characterized the physiological role of nearly one-third of all regulatory proteins known as transcription factors (TFs) in an archaeal organism. Using a unique quantitative phenotyping approach, we discovered functions for many novel TFs and revealed important secondary functions for known TFs. Surprisingly, many TFs are required for resisting multiple stressors, suggesting cross-regulation of stress responses. Through extensive validation experiments, we map the physiological roles of these novel TFs in stress response back to their position in the regulatory network wiring. This study advances understanding of the mechanisms underlying how microorganisms resist extreme stress. Given the generality of the methods employed, we expect that this study will enable future studies on how regulatory networks adjust cellular physiology in a diversity of organisms. 
    more » « less
  5. Drought is one of the most serious abiotic stressors in the environment, restricting agricultural production by reducing plant growth, development, and productivity. To investigate such a complex and multifaceted stressor and its effects on plants, a systems biology-based approach is necessitated, entailing the generation of co-expression networks, identification of high-priority transcription factors (TFs), dynamic mathematical modeling, and computational simulations. Here, we studied a high-resolution drought transcriptome of Arabidopsis. We identified distinct temporal transcriptional signatures and demonstrated the involvement of specific biological pathways. Generation of a large-scale co-expression network followed by network centrality analyses identified 117 TFs that possess critical properties of hubs, bottlenecks, and high clustering coefficient nodes. Dynamic transcriptional regulatory modeling of integrated TF targets and transcriptome datasets uncovered major transcriptional events during the course of drought stress. Mathematical transcriptional simulations allowed us to ascertain the activation status of major TFs, as well as the transcriptional intensity and amplitude of their target genes. Finally, we validated our predictions by providing experimental evidence of gene expression under drought stress for a set of four TFs and their major target genes using qRT-PCR. Taken together, we provided a systems-level perspective on the dynamic transcriptional regulation during drought stress in Arabidopsis and uncovered numerous novel TFs that could potentially be used in future genetic crop engineering programs. 
    more » « less