Abstract Sensitive dispersive readouts of single-electron devices (“gate reflectometry”) rely on one-port radio-frequency (RF) reflectometry to read out the state of the sensor. A standard practice in reflectometry measurements is to design an impedance transformer to match the impedance of the load to the characteristic impedance of the transmission line and thus obtain the best sensitivity and signal-to-noise ratio. This is particularly important for measuring large impedances, typical for dispersive readouts of single-electron devices because even a small mismatch will cause a strong signal degradation. When performing RF measurements, a calibration and error correction of the measurement apparatus must be performed in order to remove errors caused by unavoidable non-idealities of the measurement system. Lack of calibration makes optimizing a matching network difficult and ambiguous, and it also prevents a direct quantitative comparison between measurements taken of different devices or on different systems. We propose and demonstrate a simple straightforward method to design and optimize a pi matching network for readouts of devices with large impedance, $$Z \ge 1\hbox {M}\Omega$$ Z ≥ 1 M Ω . It is based on a single low temperature calibrated measurement of an unadjusted network composed of a single L-section followed by a simple calculation to determine a value of the “balancing” capacitor needed to achieve matching conditions for a pi network. We demonstrate that the proposed calibration/error correction technique can be directly applied at low temperature using inexpensive calibration standards. Using proper modeling of the matching networks adjusted for low temperature operation the measurement system can be easily optimized to achieve the best conditions for energy transfer and targeted bandwidth, and can be used for quantitative measurements of the device impedance. In this work we use gate reflectometry to readout the signal generated by arrays of parallel-connected Al-AlOx single-electron boxes. Such arrays can be used as a fast nanoscale voltage sensor for scanning probe applications. We perform measurements of sensitivity and bandwidth for various settings of the matching network connected to arrays and obtain strong agreement with the simulations.
more »
« less
Radio Frequency Reflectometry of Single-Electron Box Arrays for Nanoscale Voltage Sensing Applications
Single-electron tunneling transistors (SETs) and boxes (SEBs) exploit the phenomenon of Coulomb blockade to achieve unprecedented charge sensitivities. Single-electron boxes, however, despite their simplicity compared to SETs, have rarely been used for practical applications. The main reason for that is that unlike a SET where the gate voltage controls conductance between the source and the drain, an SEB is a two terminal device that requires either an integrated SET amplifier or high-frequency probing of its complex admittance by means of radio frequency reflectometry (RFR). The signal to noise ratio (SNR) for a SEB is small, due to its much lower admittance compared to a SET and thus matching networks are required for efficient coupling ofSEBs to an RFR setup. To boost the signal strength by a factor of N (due to a random offset charge) SEBs can be connected in parallel to form arrays sharing common gates and sources. The smaller the size of the SEB, the larger the charging energy of a SEB enabling higher operation temperature, and using devices with a small footprint (<0.01 µm2), a large number of devices (>1000) can be assembled into an array occupying just a few square microns. We show that it is possible to design SEB arrays that may compete with an SET in terms of sensitivity. In this, we tested SETs using RF reflectometry in a configuration with no DC through path (“DC-decoupled SET” or DCD SET) along with SEBs connected to the same matching network. The experiment shows that the lack of a path for a DC current makes SEBs and DCD SETs highly electrostatic discharge (ESD) tolerant, a very desirable feature for applications. We perform a detailed analysis of experimental data on SEB arrays of various sizes and compare it with simulations to devise several ways for practical applications of SEB arrays and DCD SETs.
more »
« less
- Award ID(s):
- 1904610
- PAR ID:
- 10278818
- Date Published:
- Journal Name:
- Applied Sciences
- Volume:
- 10
- Issue:
- 24
- ISSN:
- 2076-3417
- Page Range / eLocation ID:
- 8797
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm −2 ) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.more » « less
-
In this paper we explore the problem of series arc fault detection and localization on dc microgrids. Through a statistical model of the microgrid obtained by nodal equation, the injection currents are modeled as a random vector whose distribution depends on the nodal voltages and the admittance matrix. A series arc fault causes a change in the admittance matrix, which further leads to a change in the data generating distribution of injection currents. The goal is to detect and localize faults on different lines in a timely fashion subject to false alarm constraints. The model is formulated as a quickest change detection problem, and the classical Cumulative Sum algorithm (CUSUM) is employed. The proposed framework is tested on a dc microgrid with active (constant power) loads. Furthermore, a case considering fault detection in the presence of an internal node is presented. Finally, we present an experimental result on a four node dc microgrid to verify the practical application of our approach.more » « less
-
Unmanned aerial vehicles (UAVs) are widely used for various applications, such as military surveillance and reconnaissance; delivery of packages; monitoring of plants and buildings; and search and rescue. Besides basic battery-electric propulsion, in order to improve range and endurance, hybrid electric propulsion systems based on combinations of batteries, fuel cells, solar cells, and ultracapacitors are increasingly being applied to these UAVs. For small- and medium-scale UAVs, the solar and fuel cell converters have non-isolated DC-DC converters that include a high-frequency switching device. In this paper, a novel switch fault detection technique based on virtual admittance is proposed for DC-DC converters. A fault index function is formulated based on the virtual admittance to minimize potential influence by highly dynamic load change while reducing computation complexity to implement the technique in cost-effective UAVs. The proposed technique has been verified by simulations and experiments to validate the feasibility of the approach.more » « less
-
An oscillator made of a periodic waveguide comprising of uniform lossless segments with discrete nonlinear gain and radiating resistive elements prefers to operate at exceptional point of degeneracy (EPD). The steady-state regime is an EPD with π phase shift between unit cells, for various choices of small signal gain of the nonlinear elements and number of unit cells. We demonstrated this fact by monitoring both current and voltage across each nonlinear gain element and finding its effective admittance at the oscillating frequency and checking the degeneracy of the eigenmodes at such point. The EPD studied here is very promising for many applications that incorporate discrete distributed coherent sources and radiation-loss elements. Operating in the vicinity of such special degeneracy conditions may lead to potential performance enhancement in the various microwave, THz and optical systems with distributed gain and radiation, paving the way for a new class of active integrated antenna arrays and radiating laser arrays.more » « less
An official website of the United States government

