This content will become publicly available on December 1, 2023
- Award ID(s):
- 1904610
- Publication Date:
- NSF-PAR ID:
- 10345964
- Journal Name:
- Scientific Reports
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2045-2322
- Sponsoring Org:
- National Science Foundation
More Like this
-
Single-electron tunneling transistors (SETs) and boxes (SEBs) exploit the phenomenon of Coulomb blockade to achieve unprecedented charge sensitivities. Single-electron boxes, however, despite their simplicity compared to SETs, have rarely been used for practical applications. The main reason for that is that unlike a SET where the gate voltage controls conductance between the source and the drain, an SEB is a two terminal device that requires either an integrated SET amplifier or high-frequency probing of its complex admittance by means of radio frequency reflectometry (RFR). The signal to noise ratio (SNR) for a SEB is small, due to its much lower admittance compared to a SET and thus matching networks are required for efficient coupling ofSEBs to an RFR setup. To boost the signal strength by a factor of N (due to a random offset charge) SEBs can be connected in parallel to form arrays sharing common gates and sources. The smaller the size of the SEB, the larger the charging energy of a SEB enabling higher operation temperature, and using devices with a small footprint (<0.01 µm2), a large number of devices (>1000) can be assembled into an array occupying just a few square microns. We show that it ismore »
-
Abstract The composition of clinopyroxene and clinopyroxene-liquid (Cpx-Liq) pairs are frequently used to calculate crystallization/equilibration pressures in igneous systems. While canonical uncertainties are often assigned to calculated pressures based on fits to calibration or test datasets, the sources of these uncertainties (and thus ways to reduce them) have not been rigorously assessed. We show that considerable uncertainties in calculated pressures arise from analytical error associated with Electron Probe Microanalyser (EPMA) measurements of Cpx. Specifically, low X-ray counts during analysis of elements with concentrations <1 wt% resulting from insufficient count times and/or low beam currents yield highly imprecise measurements (1σ errors of 10–40% for Na2O). Low analytical precision propagates into the calculation of pressure-sensitive mineral components such as jadeite. Using Monte Carlo approaches, we demonstrate that elemental variation resulting from analytical precision alone generates pressures spanning ~4 kbar (~15 km) for a single Cpx and ~6 kbar for a single Cpx-Liq pair using popular barometry expressions. In addition, analytical uncertainties in mineral compositions produce highly correlated arrays between pressure and temperature that have been previously attributed to transcrustal magma storage. Before invoking such geological interpretations, a more mundane origin from analytical imprecision must be ruled out. Most importantly, low analytical precision does not just affectmore »
-
Abstract Single nanoparticle analysis can reveal how particle‐to‐particle heterogeneity affects ensemble properties derived from traditional bulk measurements. High‐bandwidth, low noise electrochemical measurements are needed to examine the fast heterogeneous electron‐transfer behavior of single nanoparticles with sufficient fidelity to resolve the behavior of individual nanoparticles. Herein, nanopore electrode arrays (NEAs) are fabricated in which each pore supports two vertically spaced, individually addressable electrodes. The top ring electrode serves as a particle gate to control the transport of silver nanoparticles (AgNPs) within individual attoliter volume NEAs nanopores, as shown by redox collisions of AgNPs collisions at the bottom disk electrode. The AgNP‐nanoporeis system has wide‐ranging technological applications as well as fundamental interest, since the transport of AgNPs within the NEA mimics the transport of ions through cell membranes via voltage‐gated ion channels. A voltage threshold is observed above which AgNPs are able to access the bottom electrode of the NEAs, i.e., a minimum potential at the gate electrode is required to switch between few and many observed collision events on the collector electrode. It is further shown that this threshold voltage is strongly dependent on the applied voltage at both electrodes as well as the size of AgNPs, as shown both experimentallymore »
-
Applications like Connected Healthcare through physiological signal monitoring and Secure Authentication using wearable keys can benefit greatly from battery-less operation. Low power communication along with energy harvesting is critical to sustain such perpetual battery-less operation. Previous studies have used techniques such as Tribo-Electric, Piezo-Electric, RF energy harvesting for Body Area Network devices, but they are restricted to on-body node placements. Human body channel is known to be a promising alternative to wireless radio wave communication for low power operation [1-4], through Human Body Communication, as well as very recently as a medium for power transfer through body coupled power transfer [5]. However, channel length (L) dependency of the received power makes it inefficient for L>40cm. There have also been a few studies for low power communication through the human body, but none of them could provide sustainable battery-less operation. In this paper, we utilize Resonant Electro Quasi-Static Human Body Communication (Res-EQS HBC) with Maximum Resonance Power Tracking (MRPT) to enable channel length independent whole-body communication and powering (Fig.1). We design the first system to simultaneously transfer Power and Data between a HUB device and a wearable through the human body to enable battery-less operation. Measurement results show 240uW, 28uW andmore »
-
Abstract. Low-cost sensors are often co-located with reference instruments to assess their performance and establish calibration equations, but limiteddiscussion has focused on whether the duration of this calibration period can be optimized. We placed a multipollutant monitor that containedsensors that measured particulate matter smaller than 2.5 µm (PM2.5), carbon monoxide (CO), nitrogendioxide (NO2), ozone (O3), and nitric oxide (NO) at a reference field site for 1 year. We developed calibration equationsusing randomly selected co-location subsets spanning 1 to 180 consecutive days out of the 1-year period and compared the potential root-mean-square error (RMSE) and Pearson correlation coefficient (r) values. The co-located calibration period required to obtain consistent results varied bysensor type, and several factors increased the co-location duration required for accurate calibration, including the response of a sensor toenvironmental factors, such as temperature or relative humidity (RH), or cross-sensitivities to other pollutants. Using measurements fromBaltimore, MD, where a broad range of environmental conditions may be observed over a given year, we found diminishing improvements in the medianRMSE for calibration periods longer than about 6 weeks for all the sensors. The best performing calibration periods were the ones that contained arange of environmental conditions similar to those encountered during the evaluation period (i.e., all other days of the year not used in thecalibration).more »