skip to main content


Title: Genetics of a de novo origin of undifferentiated multicellularity
The evolution of multicellularity was a major transition in evolution and set the stage for unprecedented increases in complexity, especially in land plants and animals. Here, we explore the genetics underlying a de novo origin of multicellularity in a microbial evolution experiment carried out on the green alga Chlamydomonas reinhardtii . We show that large-scale changes in gene expression underlie the transition to a multicellular life cycle. Among these, changes to genes involved in cell cycle and reproductive processes were overrepresented, as were changes to C. reinhardtii -specific and volvocine-specific genes. These results suggest that the genetic basis for the experimental evolution of multicellularity in C. reinhardtii has both lineage-specific and shared features, and that the shared features have more in common with C. reinhardtii 's relatives among the volvocine algae than with other multicellular green algae or land plants.  more » « less
Award ID(s):
1723293
NSF-PAR ID:
10278837
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Royal Society Open Science
Volume:
5
Issue:
8
ISSN:
2054-5703
Page Range / eLocation ID:
180912
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The evolution of multicellularity is a major evolutionary transition that underlies the radiation of many species in all domains of life, especially in eukaryotes. The volvocine green algae are an unconventional model system that holds great promise in the field given its genetic tractability, late transition to multicellularity, and phenotypic diversity. Multiple efforts at linking multicellularity-related developmental landmarks to key molecular changes, especially at the genome level, have provided key insights into the molecular innovations or lack thereof that underlie multicellularity. Twelve developmental changes have been proposed to explain the evolution of complex differentiated multicellularity in the volvocine algae. Co-option of key genes, such as cell cycle and developmental regulators has been observed, but with few exceptions, known co-option events do not seem to coincide with most developmental features observed in multicellular volvocines. The apparent lack of “master multicellularity genes” combined with no apparent correlation between gene gains for developmental processes suggest the possibility that many multicellular traits might be the product gene-regulatory and functional innovations; in other words, multicellularity can arise from shared genomic repertoires that undergo regulatory and functional overhauls. 
    more » « less
  2. The transition of life from single cells to more complex multicellular forms has occurred at least two dozen times among eukaryotes and is one of the major evolutionary transitions, but the early steps that enabled multicellular life to evolve and thrive remain poorly understood. Volvocine green algae are a taxonomic group that is uniquely suited to investigating the step-wise acquisition of multicellular organization. The multicellular volvocine species Volvox carteri exhibits many hallmarks of complex multicellularity including complete germ-soma division of labor, asymmetric cell divisions, coordinated tissue-level morphogenesis, and dimorphic sexes-none of which have obvious analogs in its closest unicellular relative, the model alga Chlamydomonas reinhardtii. Here, I summarize some of the key questions and areas of study that are being addressed with Volvox carteri and how increasing genomic information and methodologies for volvocine algae are opening up the entire group as an integrated experimental system for exploring the evolution of multicellularity and more. 
    more » « less
  3. Volvocine green algae are a model for understanding the evolution of mating types and sexes. They are facultatively sexual, with gametic differentiation occurring in response to nitrogen starvation (-N) in most genera and to sex inducer hormone in Volvox . The conserved RWP-RK family transcription factor (TF) MID is encoded by the minus mating-type locus or male sex-determining region of heterothallic volvocine species and dominantly determines minus or male gametic differentiation. However, the factor(s) responsible for establishing the default plus or female differentiation programs have remained elusive. We performed a phylo-transcriptomic screen for autosomal RWP-RK TFs induced during gametogenesis in unicellular isogamous Chlamydomonas reinhardtii (Chlamydomonas) and in multicellular oogamous Volvox carteri (Volvox) and identified a single conserved ortho-group we named Volvocine Sex Regulator 1 (VSR1). Chlamydomonas vsr1 mutants of either mating type failed to mate and could not induce expression of key mating-type-specific genes. Similarly, Volvox vsr1 mutants in either sex could initiate sexual embryogenesis, but the presumptive eggs or androgonidia (sperm packet precursors) were infertile and unable to express key sex-specific genes. Yeast two-hybrid assays identified a conserved domain in VSR1 capable of self-interaction or interaction with the conserved N terminal domain of MID. In vivo coimmunoprecipitation experiments demonstrated association of VSR1 and MID in both Chlamydomonas and Volvox. These data support a new model for volvocine sexual differentiation where VSR1 homodimers activate expression of plus /female gamete-specific-genes, but when MID is present, MID-VSR1 heterodimers are preferentially formed and activate minus /male gamete-specific-genes. 
    more » « less
  4. The repeated evolution of multicellularity across the tree of life has profoundly affected the ecology and evolution of nearly all life on Earth. Many of these origins were in different groups of photosynthetic eukaryotes, or algae. Here, we review the evolution and genetics of multicellularity in several groups of green algae, which include the closest relatives of land plants. These include millimeter-scale, motile spheroids of up to 50,000 cells in the volvocine algae; decimeter-scale seaweeds in the genus Ulva (sea lettuce); and very plantlike, meter-scale freshwater algae in the genus Chara (stoneworts). We also describe algae in the genus Caulerpa, which are giant, multinucleate, morphologically complex single cells. In each case, we review the life cycle, phylogeny, and genetics of traits relevant to the evolution of multicellularity, and genetic and genomic resources available for the group in question. Finally, we suggest routes toward developing these groups as model organisms for the evolution of multicellularity. 
    more » « less
  5. Abstract Background

    Throughout its nearly four-billion-year history, life has undergone evolutionary transitions in which simpler subunits have become integrated to form a more complex whole. Many of these transitions opened the door to innovations that resulted in increased biodiversity and/or organismal efficiency. The evolution of multicellularity from unicellular forms represents one such transition, one that paved the way for cellular differentiation, including differentiation of male and female gametes. A useful model for studying the evolution of multicellularity and cellular differentiation is the volvocine algae, a clade of freshwater green algae whose members range from unicellular to colonial, from undifferentiated to completely differentiated, and whose gamete types can be isogamous, anisogamous, or oogamous. To better understand how multicellularity, differentiation, and gametes evolved in this group, we used comparative genomics and fossil data to establish a geologically calibrated roadmap of when these innovations occurred.

    Results

    Our ancestral-state reconstructions, show that multicellularity arose independently twice in the volvocine algae. Our chronograms indicate multicellularity evolved during the Carboniferous-Triassic periods in Goniaceae + Volvocaceae, and possibly as early as the Cretaceous in Tetrabaenaceae. Using divergence time estimates we inferred when, and in what order, specific developmental changes occurred that led to differentiated multicellularity and oogamy. We find that in the volvocine algae the temporal sequence of developmental changes leading to differentiated multicellularity is much as proposed by David Kirk, and that multicellularity is correlated with the acquisition of anisogamy and oogamy. Lastly, morphological, molecular, and divergence time data suggest the possibility of cryptic species in Tetrabaenaceae.

    Conclusions

    Large molecular datasets and robust phylogenetic methods are bringing the evolutionary history of the volvocine algae more sharply into focus. Mounting evidence suggests that extant species in this group are the result of two independent origins of multicellularity and multiple independent origins of cell differentiation. Also, the origin of the Tetrabaenaceae-Goniaceae-Volvocaceae clade may be much older than previously thought. Finally, the possibility of cryptic species in the Tetrabaenaceae provides an exciting opportunity to study the recent divergence of lineages adapted to live in very different thermal environments.

     
    more » « less