skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hot Spots and Hot Moments in the Critical Zone: Identification of and Incorporation into Reactive Transport Models
Biogeochemical processes are often spatially discrete (hot spots) and temporally isolated (hot moments) due to variability in controlling factors like hydrologic fluxes, lithological characteristics, bio-geomorphic features, and external forcing. Although these hot spots and hot moments (HSHMs) account for a high percentage of carbon, nitrogen and nutrient cycling within the Critical Zone, the ability to identify and incorporate them into reactive transport models remains a significant challenge. This chapter provides an overview of the hot spots hot moments (HSHMs) concepts, where past work has largely focused on carbon and nitrogen dynamics within riverine systems. This work is summarized in the context of process-based and data-driven modeling approaches, including a brief description of recent research that casts a wider net to incorporate Hg, Fe and other Critical Zone elements, and focuses on interdisciplinary approaches and concepts. The broader goal of this chapter is to provide an overview of the gaps in our current understanding of HSHMs, and the opportunities therein, while specifically focusing on the underlying parameters and processes leading to their prognostic and diagnostic representation in reactive transport models.  more » « less
Award ID(s):
1830172
PAR ID:
10278844
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Wymore, A.; Yang, W.; Silver, W.; McDowell, B.; Chorover, J.
Date Published:
Journal Name:
Biogeochemistry of the Critical Zone
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wymore, A.S. (Ed.)
    The Critical Zone encompasses the biosphere and its heterogeneities, with an extremely high differentiation of properties and processes within each compartment from bedrock to canopy, and across terrestrial and aquatic interfaces. Given this complexity, a comprehensive areal characterization of the critical zone environment at multiple temporal resolutions is needed but not always possible, and failing which the ecosystem fluxes, exchange rates and biogeochemical functioning may be under- or over-predicted. The hot spots hot moments (HSHMs) concept provides an opportunity to identify the dominant controls on carbon, nutrients, water and energy exchanges. Hot spots are regions or sites that show disproportionately high reaction rates relative to surrounding area, while hot moments are defined as times that show disproportionately high reaction rates relative to longer intervening time periods (McClain et al. 2003). 
    more » « less
  2. Abstract Soil nitrous oxide (N2O) emissions are highly variable in space and time, making it difficult to estimate ecosystem level fluxes of this potent greenhouse gas. While topographic depressions are often evoked as permanent N2O hot spots and rain events are well‐known triggers of N2O hot moments, soil N2O emissions are still poorly predicted. Thus, the objective of this study was to determine how to best use topography and rain events as variables to predict soil N2O emissions at the field scale. We measured soil N2O emissions 11 times over the course of one growing season from 65 locations within an agricultural field exhibiting microtopography. We found that the topographic indices best predicting soil N2O emissions varied by date, with soil properties as consistently poor predictors. Large rain events (>30 mm) led to an N2O hot moment only in the early summer and not in the cool spring or later in the summer when crops were at peak growth and likely had high evapotranspiration rates. In a laboratory experiment, we demonstrated that low heterotrophic respiration rates at cold temperatures slowly depleted soil dissolved O2, thus suppressing denitrification over the 2–3 day timescale typical of field ponding. Our findings show that topographic depressions do not consistently act as N2O hot spots and that rainfall does not consistently trigger N2O hot moments. We assert that the spatiotemporal variation in soil N2O emissions is not always characterized by predictable hot spots or hot moments and that controls on this variation change depending on environmental conditions. 
    more » « less
  3. Abstract Hyporheic exchange is critical to river corridor biogeochemistry, but decameter‐scale flowpaths (∼10‐m long) are understudied due to logistical challenges (e.g., sampling at depth, multi‐day transit times). Some studies suggest that decameter‐scale flowpaths should have initial hot spots followed by transport‐limited conditions, whereas others suggest steady reaction rates and secondary reactions that could make decameter‐scale flowpaths important and unique. We investigated biogeochemistry along a 12‐m hyporheic mesocosm that allowed for controlled testing of seasonal and spatial water quality changes along a flowpath with fixed geometry and constant flow rate. Water quality profiles of oxygen, carbon, and nitrogen were measured at 1‐m intervals along the mesocosm over multiple seasons. The first 6 m of the mesocosm were always oxic and a net nitrogen source to mobile porewater. In winter, oxic conditions persisted to 12 m, whereas the second half of the flowpath became anoxic and a net nitrogen sink in summer. No reactive hot spots were observed in the first meter of the mesocosm. Instead, most reactions were zeroth‐order over 12 m and 54 hr of transit time. Influent chemistry had less impact on hyporheic biogeochemistry than expected due to large amounts of in situ reactant sources compared to stream‐derived reactant sources. Sorbed or buried carbon likely fueled reactions with rates controlled by temperature and redox conditions. Each reactant showed different hyporheic Damköhler numbers, challenging the characterization of flowpaths being intrinsically reaction‐ or transport‐limited. Future research should explore the prevalence and biogeochemical contributions of decameter‐scale flowpaths in diverse field settings. 
    more » « less
  4. Abstract Hydrologically mediated hot moments (HM‐HMs) of transient anomalous diffusion (TAD) denote abrupt shifts in hydraulic conditions that can profoundly influence the dynamics of anomalous diffusion for pollutants within heterogeneous aquifers. How to efficiently model these complex dynamics remains a significant challenge. To bridge this knowledge gap, we propose an innovative model termed “the impulsive, tempered fractional advection‐dispersion equation” (IT‐fADE) to simulate HM‐HMs of TAD. The model is approximated using an L1‐based finite difference solver with unconditional stability and an efficient convergence rate. Application results demonstrate that the IT‐fADE model and its solver successfully capture TAD induced by hydrologically trigged hot phenomena (including hot moments and hot spots) across three distinct aquifers: (a) transient sub‐diffusion arising from sudden shifts in hydraulic gradient within a regional‐scale alluvial aquifer, (b) transient sub‐ or super‐diffusion due to convergent or push‐pull tracer experiments within a local‐scale fractured aquifer, and (c) transient sub‐diffusion likely attributed to multiple‐conduit flow within an intermediate‐scale karst aquifer. The impulsive terms and fractional differential operator integrated into the IT‐fADE aptly capture the ephemeral nature and evolving memory of HM‐HMs of TAD by incorporating multiple stress periods into the model. The sequential HM‐HM model also characterizes breakthrough curves of pollutants as they encounter hydrologically mediated, parallel hot spots. Furthermore, we delve into discussions concerning model parameters, extensions, and comparisons, as well as impulse signals and the propagation of memory within the context of employing IT‐fADE to capture hot phenomena of TAD in aquatic systems. 
    more » « less
  5. This work proposes a new dynamic thermal and reliability management framework via task mapping and migration to improve thermal performance and reliability of commercial multi-core processors considering workload-dependent thermal hot spot stress. The new method is motivated by the observation that different workloads activate different spatial power and thermal hot spots within each core of processors. Existing run-time thermal management, which is based on on-chip location-fixed thermal sensor information, can lead to suboptimal management solutions as the temperatures provided by those sensors may not be the true hot spots. The new method, called Hot-Trim, utilizes a machine learning-based approach to characterize the power density hot spots across each core, then a new task mapping/migration scheme is developed based on the hot spot stresses. Compared to existing works, the new approach is the first to optimize VLSI reliabilities by exploring workload-dependent power hot spots. The advantages of the proposed method over the Linux baseline task mapping and the temperature-based mapping method are demonstrated and validated on real commercial chips. Experiments on a real Intel Core i7 quad-core processor executing PARSEC-3.0 and SPLASH-2 benchmarks show that, compared to the existing Linux scheduler, core and hot spot temperature can be lowered by 1.15 to 1.31C. In addition, Hot-Trim can improve the chip's EM, NBTI and HCI related reliability by 30.2%, 7.0% and 31.1% respectively compared to Linux baseline without any performance degradation. Furthermore, it improves EM and HCI related reliability by 29.6% and 19.6% respectively, and at the same time even further reduces the temperature by half a degree compared to the conventional temperature-based mapping technique. 
    more » « less