skip to main content


Title: The Search for Electroweakinos
In this review, we consider a general theoretical framework for fermionic color-singlet states—including a singlet, a doublet, and a triplet under the Standard Model SU(2) L gauge symmetry, corresponding to the bino, higgsino, and wino in supersymmetric theories—generically dubbed electroweakinos for their mass eigenstates. Depending on the relations among these states’ three mass parameters and their mixing after the electroweak symmetry breaking, this sector leads to a rich phenomenology that may be accessible in current and near-future experiments. We discuss the decay patterns of electroweakinos and their observable signatures at colliders, review the existing bounds on the model parameters, and summarize the current statuses of the comprehensive searches by the ATLAS and CMS Collaborations at the Large Hadron Collider. We also comment on the prospects for future colliders. An important feature of the theory is that the lightest neutral electroweakino can be identified as a weakly interacting massive particle cold dark matter candidate. We take into account the existing bounds on the parameters from the dark matter direct detection experiments and discuss the complementarity of the electroweakino searches at colliders.  more » « less
Award ID(s):
1915147
NSF-PAR ID:
10278848
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Annual Review of Nuclear and Particle Science
Volume:
70
Issue:
1
ISSN:
0163-8998
Page Range / eLocation ID:
425 to 454
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc>

    We show that simultaneously explaining dark matter and the observed value of the muon’s magnetic dipole moment may lead to yet unexplored photon signals at the LHC. We consider the Minimal Supersymmetric Standard Model with electroweakino masses in the few-to-several hundred GeV range, and opposite sign of the Bino mass parameter with respect to both the Higgsino and Wino mass parameters. In such region of parameter space, the spin-independent elastic scattering cross section of a Bino-like dark matter candidate in direct detection experiment is suppressed by cancellations between different amplitudes, and the observed dark matter relic density can be realized via Bino-Wino co-annihilation. Moreover, the observed value of the muon’s magnetic dipole moment can be explained by Bino and Wino loop contributions. Interestingly, “radiative” decays of Wino-like neutralinos into the lightest neutralino and a photon are enhanced, whereas decays into leptons are suppressed. While these decay patterns weaken the reach of multi-lepton searches at the LHC, the radiative decay opens a new window for probing dark matter at the LHC through the exploration of parameter space regions beyond those currently accessible. To complement the current electroweakino searches, we propose searching for a single (soft) photon plus missing transverse energy, accompanied by a hard initial state radiation jet.

     
    more » « less
  2. Traditional dark matter models, e.g., weakly interacting massive particles (WIMPs), assume dark matter (DM) is weakly coupled to the standard model so that elastic scattering between dark matter and baryons can be described perturbatively by the Born approximation; most direct detection experiments are analyzed according to that assumption. We show that when the fundamental DM-baryon interaction is attractive, dark matter-nucleus scattering is nonperturbative in much of the relevant parameter range. The cross section exhibits rich resonant behavior with a highly nontrivial dependence on atomic mass; furthermore, the extended rather than pointlike nature of nuclei significantly impacts the cross sections and must therefore be properly taken into account. The repulsive case also shows significant departures from perturbative predictions and also requires full numerical calculation. These nonperturbative effects change the boundaries of exclusion regions from existing direct detection, astrophysical and CMB constraints. Near a resonance value of the parameters the typical velocity-independent Yukawa behavior, σ ∼ v0, does not apply. We take the nontrivial velocity dependence into account in our analysis, however it turns out that this more accurate treatment has little impact on limits given current constraints. Correctly treating the extended size of the nucleus and doing an exact integration of the Schrödinger equation does have a major impact relative to past analyses based on the Born approximation and naive form factors, so those improvements are essential for interpreting observational constraints. We report the corrected exclusion regions superseding previous limits from XQC, CRESST Surface Run, CMB power spectrum and extensions with Lyman-α and Milky Way satellites, and Milky Way gas clouds. Some limits become weaker, by an order of magnitude or more, than previous bounds in the literature which were based on perturbation theory and pointlike sources, while others become stronger. Gaps which open by correct treatment of some particular constraint can sometimes be closed using a different constraint. We also discuss the dependence on mediator mass and give approximate expressions for the velocity dependence near a resonance. Sexaquark (uuddss) DM with mass around 2 GeV, which exchanges QCD mesons with baryons, remains unconstrained for most of the parameter space of interest. A statement in the literature that a DM-nucleus cross section larger than 10−25 cm2 implies dark matter is composite, is corrected. 
    more » « less
  3. A bstract Hidden sectors are ubiquitous in supergravity theories, in strings and in branes. Well motivated models such as the Stueckelberg hidden sector model could provide a candidate for dark matter. In such models, the hidden sector communicates with the visible sector via the exchange of a dark photon (dark Z ′) while dark matter is constituted of Dirac fermions in the hidden sector. Using data from collider searches and precision measurements of SM processes as well as the most recent limits from dark matter direct and indirect detection experiments, we perform a comprehensive scan over a wide range of the Z ′ mass and set exclusion bounds on the parameter space from sub-GeV to several TeV. We then discuss the discovery potential of an $$ \mathcal{O} $$ O (TeV) scale Z ′ at HL-LHC and the ability of future forward detectors to probe very weakly interacting sub-GeV Z ′ bosons. Our analysis shows that the parameter space in which a Z ′ can decay to hidden sector dark matter is severely constrained whereas limits become much weaker for a Z ′ with no dark decays. The analysis also favors a self-thermalized dark sector which is necessary to satisfy the dark matter relic density. 
    more » « less
  4. null (Ed.)
    A bstract We consider a class of models in which the neutrinos acquire Majorana masses through mixing with singlet neutrinos that emerge as composite states of a strongly coupled hidden sector. In this framework, the light neutrinos are partially composite particles that obtain their masses through the inverse seesaw mechanism. We focus on the scenario in which the strong dynamics is approximately conformal in the ultraviolet, and the compositeness scale lies at or below the weak scale. The small parameters in the Lagrangian necessary to realize the observed neutrino masses can naturally arise as a consequence of the scaling dimensions of operators in the conformal field theory. We show that this class of models has interesting implications for a wide variety of experiments, including colliders and beam dumps, searches for lepton flavor violation and neutrinoless double beta decay, and cosmological observations. At colliders and beam dumps, this scenario can give rise to striking signals involving multiple displaced vertices. The exchange of hidden sector states can lead to observable rates for flavor violating processes such as μ → eγ and μ → e conversion. If the compositeness scale lies at or below a hundred MeV, the rate for neutrinoless double beta decay is suppressed by form factors and may be reduced by an order of magnitude or more. The late decays of relic singlet neutrinos can give rise to spectral distortions in the cosmic microwave background that are large enough to be observed in future experiments. 
    more » « less
  5. Abstract With the establishment and maturation of the experimental programs searching for new physics with sizeable couplings at the LHC, there is an increasing interest in the broader particle and astrophysics community for exploring the physics of light and feebly-interacting particles as a paradigm complementary to a New Physics sector at the TeV scale and beyond. FIPs 2020 has been the first workshop fully dedicated to the physics of feebly-interacting particles and was held virtually from 31 August to 4 September 2020. The workshop has gathered together experts from collider, beam dump, fixed target experiments, as well as from astrophysics, axions/ALPs searches, current/future neutrino experiments, and dark matter direct detection communities to discuss progress in experimental searches and underlying theory models for FIPs physics, and to enhance the cross-fertilisation across different fields. FIPs 2020 has been complemented by the topical workshop “Physics Beyond Colliders meets theory”, held at CERN from 7 June to 9 June 2020. This document presents the summary of the talks presented at the workshops and the outcome of the subsequent discussions held immediately after. It aims to provide a clear picture of this blooming field and proposes a few recommendations for the next round of experimental results. 
    more » « less