skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Curtain lowers on directly detectable higgsino dark matter
A higgsino could be some or all of the dark matter, with a mass bounded from above by about 1.1 TeV assuming a thermal freeze-out density, and from below by collider searches. Direct detection experiments imply purity constraints on a dark matter higgsino, limiting the mixing with the electroweak gauginos. Using the new strong limits available as of the end of 2024 from the LUX-ZEPLIN experiment, I quantify the resulting lower bounds on gaugino masses and upper bounds on higgsino mass splittings, assuming that the scalar superpartners and Higgs bosons of minimal supersymmetry are in the decoupling limit. Similar bounds are projected for the critical future scenario that direct detection experiments reach the neutrino fog that hampers discovery prospects.  more » « less
Award ID(s):
2310533
PAR ID:
10587608
Author(s) / Creator(s):
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review D
Volume:
111
Issue:
7
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this review, we consider a general theoretical framework for fermionic color-singlet states—including a singlet, a doublet, and a triplet under the Standard Model SU(2) L gauge symmetry, corresponding to the bino, higgsino, and wino in supersymmetric theories—generically dubbed electroweakinos for their mass eigenstates. Depending on the relations among these states’ three mass parameters and their mixing after the electroweak symmetry breaking, this sector leads to a rich phenomenology that may be accessible in current and near-future experiments. We discuss the decay patterns of electroweakinos and their observable signatures at colliders, review the existing bounds on the model parameters, and summarize the current statuses of the comprehensive searches by the ATLAS and CMS Collaborations at the Large Hadron Collider. We also comment on the prospects for future colliders. An important feature of the theory is that the lightest neutral electroweakino can be identified as a weakly interacting massive particle cold dark matter candidate. We take into account the existing bounds on the parameters from the dark matter direct detection experiments and discuss the complementarity of the electroweakino searches at colliders. 
    more » « less
  2. While much supersymmetric weakly interacting massive particle (WIMP) parameter space has been ruled out, one remaining important candidate is Higgsino dark matter. The Higgsino can naturally realize the “inelastic dark matter” scenario, where the scattering off a nucleus occurs between two nearly-degenerate states, making it invisible to WIMP direct detection experiments if the splitting is too large to be excited. It was realized that a “luminous dark matter” detection process, where the Higgsino upscatters in the Earth and subsequently decays into a photon in a large neutrino detector, offers the best sensitivity to such a scenario. We consider the possibility of adding a large volume of a heavy element, such as Pb or U, around the detector. We also consider the presence of U and Th in the Earth itself, and the effect of an enhanced high-velocity tail of the dark matter distribution due to the presence of the Large Magellanic Cloud. These effects can significantly improve the sensitivity of detectors such as JUNO, SNO + , KamLAND, and Borexino, potentially making it possible in the future to cover much of the remaining parameter space for this classic supersymmetric WIMP dark matter. Published by the American Physical Society2025 
    more » « less
  3. Abstract The flux of neutrinos from annihilation of gravitationally captured dark matter in the Sun has significant constraints from direct-detection experiments. However, these constraints are relaxed for inelastic dark matter as inelastic dark matter interactions generate less energetic nuclear recoils compared to elastic dark matter interactions. In this paper, we explore the possibility for large volume underground neutrino experiments to detect the neutrino flux from captured inelastic dark matter in the Sun. The neutrino spectrum has two components: a mono-energetic “spike” from pion and kaon decays at rest and a broad-spectrum “shoulder” from prompt primary meson decays. We focus on detecting the shoulder neutrinos from annihilation of hadrophilic inelastic dark matter with masses in the range 4–100 GeV and the mass splittings in up to 300 keV. We determine the event selection criterion for DUNE to identify GeV-scale muon neutrinos and anti-neutrinos originating from hadrophilic dark matter annihilation in the Sun, and forecast the sensitivity from contained events. We also map the current bounds from Super-Kamiokande and IceCube on elastic dark matter, as well as the projected limits from Hyper-Kamiokande, to the parameter space of inelastic dark matter. We find that there is a region of parameter space that these neutrino experiments are more sensitive to than the direct-detection experiments. For dark matter annihilation to heavy-quarks, the projected sensitivity of DUNE is weaker than current (future) Super (Hyper) Kamiokande experiments. However, for the light-quark channel, only the spike is observable and DUNE will be the most sensitive experiment. 
    more » « less
  4. The lightest supersymmetric particles could be Higgsinos that have a small mixing with gauginos. If the lightest Higgsino-like state makes up some or all of the dark matter with a thermal freeze-out density, then its mass must be between about 100 GeV and 1150 GeV, and dark matter searches put bounds on the amount of gaugino contamination that it can have. Motivated by the generally good agreement of flavor- and C P -violating observables with Standard Model predictions, I consider models in which the scalar particles of minimal supersymmetry are heavy enough to be essentially decoupled, except for the 125 GeV Higgs boson. I survey the resulting purity constraints as lower bounds on the gaugino masses and upper bounds on the Higgsino mass splittings. I also discuss the mild excesses in recent soft lepton searches for charginos and neutralinos at the LHC, and show that they can be accommodated in these models if tan β is small and μ is negative. Published by the American Physical Society2024 
    more » « less
  5. A bstract The vanishing of the Higgs quartic coupling at a high energy scale may be explained by Intermediate Scale Supersymmetry, where supersymmetry breaks at (10 9 -10 12 ) GeV. The possible range of supersymmetry breaking scales can be narrowed down by precise measurements of the top quark mass and the strong coupling constant. On the other hand, nuclear recoil experiments can probe Higgsino or sneutrino dark matter up to a mass of 10 12 GeV. We derive the correlation between the dark matter mass and precision measurements of standard model parameters, including supersymmetric threshold corrections. The dark matter mass is bounded from above as a function of the top quark mass and the strong coupling constant. The top quark mass and the strong coupling constant are bounded from above and below respectively for a given dark matter mass. We also discuss how the observed dark matter abundance can be explained by freeze-out or freeze-in during a matter-dominated era after inflation, with the inflaton condensate being dissipated by thermal effects. 
    more » « less