ABSTRACT Observed accretion rates onto the Milky Way and other local spirals fall short of that required to sustain star formation for cosmological timescales. A potential avenue for this unseen accretion is a rotating inflow in the volume-filling hot phase ($$\sim 10^6\, {\rm K}$$) of the circumgalactic medium (CGM), as suggested by some cosmological simulations. Using hydrodynamic simulations and a new analytic solution valid in the slow-rotation limit, we show that a hot inflow spins up as it approaches the galaxy, while remaining hot, subsonic, and quasi-spherical. Within the radius of angular momentum support ($$\sim 15\, {\rm kpc}$$ for the Milky Way) the hot flow flattens into a disc geometry and then cools from $$\sim 10^6$$ to $$\sim 10^4\, {\rm K}$$ at the disc–halo interface. Cooling affects all hot gas, rather than just a subset of individual gas clouds, implying that accretion via hot inflows does not rely on local thermal instability in contrast with ‘precipitation’ models for galaxy accretion. Prior to cooling and accretion the inflow completes ≈tcool/tff radians of rotation, where tcool/tff is the cooling time to free-fall time ratio in hot gas immediately outside the galaxy. The ratio tcool/tff may thus govern the development of turbulence and enhancement of magnetic fields in gas accreting onto low-redshift spirals. We show that if rotating hot inflows are common in Milky-Way-size disc galaxies, as predicted, then signatures of the expected hot gas rotation profile should be observable with X-ray telescopes and fast radio burst surveys.
more »
« less
Thermal instability in the CGM of L ⋆ galaxies: testing ‘precipitation’ models with the FIRE simulations
ABSTRACT We examine the thermodynamic state and cooling of the low-z circumgalactic medium (CGM) in five FIRE-2 galaxy formation simulations of Milky Way-mass galaxies. We find that the CGM in these simulations is generally multiphase and dynamic, with a wide spectrum of largely non-linear density perturbations sourced by the accretion of gas from the intergalactic medium (IGM) and outflows from both the central and satellite galaxies. We investigate the origin of the multiphase structure of the CGM with a particle-tracking analysis and find that most of the low-entropy gas has cooled from the hot halo as a result of thermal instability triggered by these perturbations. The ratio of cooling to free-fall time-scales tcool/tff in the hot component of the CGM spans a wide range of ∼1−100 at a given radius but exhibits approximately constant median values of ∼5−20 at all radii 0.1Rvir < r < Rvir. These are similar to the ≈10−20 value typically adopted as the thermal instability threshold in ‘precipitation’ models of the ICM. Consequently, a one-dimensional model based on the assumption of a constant tcool/tff and hydrostatic equilibrium approximately reproduces the number density and entropy profiles of each simulation but only if it assumes the metallicity profile and temperature boundary condition taken directly from the simulation. We explicitly show that the tcool/tff value of a gas parcel in the hot component of the CGM does not predict its probability of subsequently accreting on to the central galaxy. This suggests that the value of tcool/tff is a poor predictor of thermal stability in gaseous haloes in which large-amplitude density perturbations are prevalent.
more »
« less
- PAR ID:
- 10278863
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 505
- Issue:
- 2
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 1841 to 1862
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Radiative cooling and active galactic nucleus heating are thought to form a feedback loop that regulates the evolution of low-redshift cool-core galaxy clusters. Numerical simulations suggest that the formation of multiphase gas in the cluster core imposes a floor on the ratio of cooling time (tcool) to free-fall time (tff) at min(tcool/tff) ≈ 10. Observations of galaxy clusters show evidence for such a floor, and usually the cluster cores with min(tcool/tff) ≲ 30 contain abundant multiphase gas. However, there are important outliers. One of them is Abell 2029 (A2029), a massive galaxy cluster (M200 ≳ 1015 M⊙) with min(tcool/tff) ∼ 20, but little apparent multiphase gas. In this paper, we present high-resolution 3D hydrodynamic adaptive mesh refinement simulations of a cluster similar to A2029 and study how it evolves over a period of 1–2 Gyr. Those simulations suggest that A2029 self-regulates without producing multiphase gas because the mass of its central black hole ($${\sim} 5 \times 10^{10} \, \mathrm{ M}_\odot$$) is great enough for Bondi accretion of hot ambient gas to produce enough feedback energy to compensate for radiative cooling.more » « less
-
ABSTRACT Gas in the central regions of cool-core clusters and other massive haloes has a short cooling time (≲1 Gyr). Theoretical models predict that this gas is susceptible to multiphase condensation, in which cold gas is expected to condense out of the hot phase if the ratio of the thermal instability growth time-scale (tti) to the free-fall time (tff) is tti/tff ≲ 10. The turbulent mixing time tmix is another important time-scale: if tmix is short enough, the fluctuations are mixed before they can cool. In this study, we perform high-resolution (5122 × 768–10242 × 1536 resolution elements) hydrodynamic simulations of turbulence in a stratified medium, including radiative cooling of the gas. We explore the parameter space of tti/tff and tti/tmix relevant to galaxy and cluster haloes. We also study the effect of the steepness of the entropy profile, the strength of turbulent forcing and the nature of turbulent forcing (natural mixture versus compressive modes) on multiphase gas condensation. We find that larger values of tti/tff or tti/tmix generally imply stability against multiphase gas condensation, whereas larger density fluctuations (e.g. due to compressible turbulence) promote multiphase gas condensation. We propose a new criterion min (tti/min (tmix, tff)) ≲ c2 × exp (c1σs) for when the halo becomes multiphase, where σs denotes the amplitude of logarithmic density fluctuations and c1 ≃ 6, c2 ≃ 1.8 from an empirical fit to our results.more » « less
-
ABSTRACT Heating of virialized gas by streaming cosmic rays (CRs) may be energetically important in galaxy haloes, groups, and clusters. We present a linear thermal stability analysis of plasmas heated by streaming CRs. We separately treat equilibria with and without background gradients, and with and without gravity. We include both CR streaming and diffusion along the magnetic-field direction. Thermal stability depends strongly on the ratio of CR pressure to gas pressure, which determines whether modes are isobaric or isochoric. Modes with $$\boldsymbol {k \cdot B }\ne 0$$ are strongly affected by CR diffusion. When the streaming time is shorter than the CR diffusion time, thermally unstable modes (with $$\boldsymbol {k \cdot B }\ne 0$$) are waves propagating at a speed ∝ the Alfvén speed. Halo gas in photoionization equilibrium is thermally stable independent of CR pressure, while gas in collisional ionization equilibrium is unstable for physically realistic parameters. In gravitationally stratified plasmas, the oscillation frequency of thermally overstable modes can be higher in the presence of CR streaming than the buoyancy/free-fall frequency. This may modify the critical tcool/tff at which multiphase gas is present. The criterion for convective instability of a stratified, CR-heated medium can be written in the familiar Schwarzschild form dseff/dz < 0, where seff is an effective entropy involving the gas and CR pressures. We discuss the implications of our results for the thermal evolution and multiphase structure of galaxy haloes, groups, and clusters.more » « less
-
ABSTRACT We investigate how cosmic rays (CRs) affect thermal and hydrostatic stability of circumgalactic (CGM) gas, in simulations with both CR streaming and diffusion. Local thermal instability can be suppressed by CR-driven entropy mode propagation, in accordance with previous analytic work. However, there is only a narrow parameter regime where this operates, before CRs overheat the background gas. As mass dropout from thermal instability causes the background density and hence plasma β ≡ Pg/PB to fall, the CGM becomes globally unstable. At the cool disc-to-hot−halo interface, a sharp drop in density boosts Alfven speeds and CR gradients, driving a transition from diffusive to streaming transport. CR forces and heating strengthen, while countervailing gravitational forces and radiative cooling weaken, resulting in a loss of both hydrostatic and thermal equilibrium. In lower β haloes, CR heating drives a hot, single-phase diffuse wind with velocities v ∝ (theat/tff)−1, which exceeds the escape velocity when theat/tff ≲ 0.4. In higher β haloes, where the Alfven Mach number is higher, CR forces drive multi-phase winds with cool, dense fountain flows and significant turbulence. These flows are CR dominated due to ‘trapping’ of CRs by weak transverse B-fields, and have the highest mass loading factors. Thus, local thermal instability can result in winds or fountain flows where either the heat or momentum input of CRs dominates.more » « less