skip to main content

Title: Topographic, soil, and climate drivers of drought sensitivity in forests and shrublands of the Pacific Northwest, USA
Abstract Climate change is anticipated to increase the frequency and intensity of droughts, with major impacts to ecosystems globally. Broad-scale assessments of vegetation responses to drought are needed to anticipate, manage, and potentially mitigate climate-change effects on ecosystems. We quantified the drought sensitivity of vegetation in the Pacific Northwest, USA, as the percent reduction in vegetation greenness under droughts relative to baseline moisture conditions. At a regional scale, shrub-steppe ecosystems—with drier climates and lower biomass—showed greater drought sensitivity than conifer forests. However, variability in drought sensitivity was considerable within biomes and within ecosystems and was mediated by landscape topography, climate, and soil characteristics. Drought sensitivity was generally greater in areas with higher elevation, drier climate, and greater soil bulk density. Ecosystems with high drought sensitivity included dry forests along ecotones to shrublands, Rocky Mountain subalpine forests, and cold upland sagebrush communities. In forests, valley bottoms and areas with low soil bulk density and high soil available water capacity showed reduced drought sensitivity, suggesting their potential as drought refugia. These regional-scale drought-sensitivity patterns discerned from remote sensing can complement plot-scale studies of plant physiological responses to drought to help inform climate-adaptation planning as drought conditions intensify.
Authors:
; ; ; ;
Award ID(s):
1633831
Publication Date:
NSF-PAR ID:
10278876
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. Despite clear signals of regional impacts of the recent severe drought inCalifornia, e.g., within Californian Central Valley groundwater storage and Sierra Nevada forests, our understanding of how this drought affected soil moisture and vegetation responses in lowland grasslands is limited. In order to better understand the resulting vulnerability of these landscapes to fire and ecosystem degradation, we aimed to generalize drought-induced changes in subsurface soil moisture and to explore its effects within grassland ecosystems of Southern California. We used a high-resolution in situ dataset of climate and soil moisture from two grassland sites (coastal and inland), alongside greenness (Normalized Difference Vegetation Index) data from Landsat imagery, to explore drought dynamics in environments with similar precipitation but contrasting evaporative demand over the period 2008–2019. We show that negative impacts of prolonged precipitation deficits on vegetation at the coastal site were buffered by fog and moderate temperatures. During the drought, the Santa Barbara region experienced an early onset of the dry season in mid-March instead of April, resulting in premature senescence of grasses by mid-April. We developed a parsimonious soil moisture balance model that captures dynamic vegetation–evapotranspiration feedbacks and analyzed the links between climate, soil moisture, and vegetation greenness over several years ofmore »simulated drought conditions, exploring the impacts of plausible climate change scenarios that reflect changes to precipitation amounts, their seasonal distribution, and evaporative demand. The redistribution of precipitation over a shortened rainy season highlighted a strong coupling of evapotranspiration to incoming precipitation at the coastal site, while the lower water-holding capacity of soils at the inland site resulted in additional drainage occurring under this scenario. The loss of spring rains due to a shortening of the rainy season also revealed a greater impact on the inland site, suggesting less resilience to low moisture at a time when plant development is about to start. The results also suggest that the coastal site would suffer disproportionally from extended dry periods, effectively driving these areas into more extreme drought than previously seen. These sensitivities suggest potential future increases in the risk of wildfires under climate change, as well as increased grassland ecosystem vulnerability.« less
  2. Abstract

    Tree die-off, driven by extreme drought and exacerbated by a warming climate, is occurring rapidly across every wooded continent—threatening carbon sinks and other ecosystem services provided by forests and woodlands. Forecasting the spatial patterns of tree die-off in response to drought is a priority for the management and conservation of forested ecosystems under projected future hotter and drier climates. Several thresholds derived from drought-metrics have been proposed to predict mortality ofPinus edulis,a model tree species in many studies of drought-induced tree die-off. To improve future capacity to forecast tree mortality, we used a severe drought as a natural experiment. We compared the ability of existing mortality thresholds derived from four drought metrics (the Forest Drought Severity Index (FDSI), the Standardized Precipitation Evapotranspiration Index, and raw values of precipitation (PPT) and vapor pressure deficit, calculated using 4 km PRISM data) to predict areas ofP. edulisdie-off following an extreme drought in 2018 across the southwestern US. Using aerial detection surveys of tree mortality in combination with gridded climate data, we calculated the agreement between these four proposed thresholds and the presence and absence of regional-scale tree die-off using sensitivity, specificity, and the area under the curve (AUC). Overall, existing mortality thresholdsmore »tended to over predict the spatial extent of tree die-off across the landscape, yet some retain moderate skill in discriminating between areas that experienced and did not experience tree die-off. The simple PPT threshold had the highest AUC score (71%) as well as fair sensitivity and specificity, but the FDSI had the greatest sensitivity to die-off (85.9%). We highlight that empirically derived climate thresholds may be useful forecasting tools to identify vulnerable areas to drought induced die-off, allowing for targeted responses to future droughts and improved management of at-risk areas.

    « less
  3. Abstract

    Arctic ecosystems are particularly vulnerable to climate change because of Arctic amplification. Here, we assessed the climatic impacts of low-end, 1.5 °C, and 2.0 °C global temperature increases above pre-industrial levels, on the warming of terrestrial ecosystems in northern high latitudes (NHL, above 60 °N including pan-Arctic tundra and boreal forests) under the framework of the Inter-Sectoral Impact Model Intercomparison Project phase 2b protocol. We analyzed the simulated changes of net primary productivity, vegetation biomass, and soil carbon stocks of eight ecosystem models that were forced by the projections of four global climate models and two atmospheric greenhouse gas pathways (RCP2.6 and RCP6.0). Our results showed that considerable impacts on ecosystem carbon budgets, particularly primary productivity and vegetation biomass, are very likely to occur in the NHL areas. The models agreed on increases in primary productivity and biomass accumulation, despite considerable inter-model and inter-scenario differences in the magnitudes of the responses. The inter-model variability highlighted the inadequacies of the present models, which fail to consider important components such as permafrost and wildfire. The simulated impacts were attributable primarily to the rapid temperature increases in the NHL and the greater sensitivity of northern vegetation to warming, which contrasted with themore »less pronounced responses of soil carbon stocks. The simulated increases of vegetation biomass by 30–60 Pg C in this century have implications for climate policy such as the Paris Agreement. Comparison between the results at two warming levels showed the effectiveness of emission reductions in ameliorating the impacts and revealed unavoidable impacts for which adaptation options are urgently needed in the NHL ecosystems.

    « less
  4. Abstract

    Wildfires are a significant agent of disturbance in forests and highly sensitive to climate change. Short-interval fires and high severity (mortality-causing) fires in particular, may catalyze rapid and substantial ecosystem shifts by eliminating woody species and triggering conversions from forest to shrub or grassland ecosystems. Modeling and fine-scale observations suggest negative feedbacks between fire and fuels should limit reburn prevalence as overall fire frequency rises. However, while we have good information on reburning patterns for individual fires or small regions, the validity of scaling these conclusions to broad regions like the US West remains unknown. Both the prevalence of reburning and the strength of feedbacks on likelihood of reburning over differing timescales have not been documented at the regional scale. Here we show that while there is a strong negative feedback for very short reburning intervals throughout wildland forests of the Western US, that feedback weakens after 10–20 years. The relationship between reburning intervals and drought diverges depending on location, with coastal systems reburning quicker (e.g. shorter interval between fires) in wetter conditions and interior forests in drier. This supports the idea that vegetation productivity—primarily fine fuels that accumulate rapidly (<10 years)—is of primary importance in determining reburn intervals.more »Our results demonstrate that while over short time intervals increasing fires inhibits reburning at broad scales, that breaks down after a decade. This provides important insights about patterns at very broad scales and agrees with finer scale work, suggesting that lessons from those scales apply across the entire western US.

    « less
  5. Understanding plant phenological change is of great concern in the context of global climate change. Phenological models can aid in understanding and predicting growing season changes and can be parameterized with gross primary production (GPP) estimated using the eddy covariance (EC) technique. This study used nine years of EC-derived GPP data from three mature subtropical longleaf pine forests in the southeastern United States with differing soil water holding capacity in combination with site-specific micrometeorological data to parameterize a photosynthesis-based phenological model. We evaluated how weather conditions and prescribed fire led to variation in the ecosystem phenological processes. The results suggest that soil water availability had an effect on phenology, and greater soil water availability was associated with a longer growing season (LOS). We also observed that prescribed fire, a common forest management activity in the region, had a limited impact on phenological processes. Dormant season fire had no significant effect on phenological processes by site, but we observed differences in the start of the growing season (SOS) between fire and non-fire years. Fire delayed SOS by 10 d ± 5 d (SE), and this effect was greater with higher soil water availability, extending SOS by 18 d on average. Firemore »was also associated with increased sensitivity of spring phenology to radiation and air temperature. We found that interannual climate change and periodic weather anomalies (flood, short-term drought, and long-term drought), controlled annual ecosystem phenological processes more than prescribed fire. When water availability increased following short-term summer drought, the growing season was extended. With future climate change, subtropical areas of the Southeastern US are expected to experience more frequent short-term droughts, which could shorten the region’s growing season and lead to a reduction in the longleaf pine ecosystem’s carbon sequestration capacity.« less