Public key Encryption with Keyword Search (PEKS) aims in mitigating the impacts of data privacy versus utilization dilemma by allowing any user in the system to send encrypted files to the server to be searched by a receiver. The receiver can retrieve the encrypted files containing specific keywords by providing the corresponding trapdoors of these keywords to the server. Despite their merits, the existing PEKS schemes introduce a high end-to-end delay that may hinder their adoption in practice. Moreover, they do not scale well for large security parameters and provide no post-quantum security promises. In this paper, we propose novel lattice-based PEKS schemes that offer a high computational efficiency along with better security assurances than that of the existing alternatives. Specifically, our NTRU-PEKS scheme achieves 18 times lower end-to-end delay than the most efficient pairing-based alternatives. Our LWE-PEKS offers provable security in the standard model with a reduction to the worst-case lattice problems. We fully implemented our NTRU-PEKS scheme and benchmarked its performance as deployed on Amazon Web Services cloud infrastructures. 
                        more » 
                        « less   
                    
                            
                            Gadget-Based iNTRU Lattice Trapdoors
                        
                    
    
            We present two new related families of lattice trapdoors based on the inhomogeneous NTRU problem (iNTRU) defined in Genise et al. [16] (ASIACRYPT 2019). Our constructions are “gadget-based” and offer compact secret keys and preimages and compatibility with existing, efficient preimage sampling algorithms. Our trapdoors can be used as a fundamental building block in lattice-based schemes relying lattice trapdoors. In addition, we implemented our trapdoors using the PALISADE library. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1815562
- PAR ID:
- 10278877
- Editor(s):
- Bhargavan, K.; Oswald, E.; Prabhakaran, M.
- Date Published:
- Journal Name:
- Progress in Cryptology – INDOCRYPT 2020
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Boldyreva, Alexandra; Kolesnikov, Vladimir (Ed.)Updatable Encryption (UE) and Proxy Re-encryption (PRE) allow re-encrypting a ciphertext from one key to another in the symmetric-key and public-key settings, respectively, without decryption. A longstanding open question has been the following: do unidirectional UE and PRE schemes (where ciphertext re-encryption is permitted in only one direction) necessarily require stronger/more structured assumptions as compared to their bidirectional counterparts? Known constructions of UE and PRE seem to exemplify this “gap” – while bidirectional schemes can be realized as relatively simple extensions of public-key encryption from standard assumptions such as DDH or LWE, unidirectional schemes typically rely on stronger assumptions such as FHE or indistinguishability obfuscation (iO), or highly structured cryptographic tools such as bilinear maps or lattice trapdoors. In this paper, we bridge this gap by showing the first feasibility results for realizing unidirectional UE and PRE from a new generic primitive that we call Key and Plaintext Homomorphic Encryption (KPHE) – a public-key encryption scheme that supports additive homomorphisms on its plaintext and key spaces simultaneously. We show that KPHE can be instantiated from DDH. This yields the first constructions of unidirectional UE and PRE from DDH. Our constructions achieve the strongest notions of post-compromise security in the standard model. Our UE schemes also achieve “backwards-leak directionality” of key updates (a notion we discuss is equivalent, from a security perspective, to that of unidirectionality with no-key updates). Our results establish (somewhat surprisingly) that unidirectional UE and PRE schemes satisfying such strong security notions do not, in fact, require stronger/more structured cryptographic assumptions as compared to bidirectional schemes.more » « less
- 
            Searchable Encryption (SE) has been extensively examined by both academic and industry researchers. While many academic SE schemes show provable security, they usually expose some query information (e.g., search patterns) to achieve high efficiency. However, several inference attacks have exploited such leakage, e.g., a query recovery attack can convert opaque query trapdoors to their corresponding keywords based on some prior knowledge. On the other hand, many proposed SE schemes require significant modification of existing applications, which makes them less practical, weak in usability, and difficult to deploy. In this paper, we introduce a secure and practical SE scheme with provable security strength for cloud applications, called IDCrypt, which improves the search efficiency and enhanced the security strength of SE using symmetric cryptography. We further point out the main challenges in securely searching on multiple indexes and sharing encrypted data between multiple users. To address the above issues, we propose a token-adjustment scheme to preserve the search functionality among multi-indexes, and a key sharing scheme which combines Identity-Based Encryption (IBE) and Public-Key Encryption (PKE). Our experimental results show that the overhead of IDCrypt is fairly low.more » « less
- 
            Lattice-based algorithms in cryptanalysis often search for a target vector satisfying integer linear constraints as a shortest or closest vector in some lattice. In this work, we observe that these formulations may discard non-linear information from the underlying application that can be used to distinguish the target vector even when it is far from being uniquely close or short. We formalize lattice problems augmented with a predicate distinguishing a target vector and give algorithms for solving instances of these problems. We apply our techniques to lattice-based approaches for solving the Hidden Number Problem, a popular technique for recovering secret DSA or ECDSA keys in side-channel attacks, and demonstrate that our algorithms succeed in recovering the signing key for instances that were previously believed to be unsolvable using lattice approaches. We carried out extensive experiments using our estimation and solving framework, which we also make available with this work.more » « less
- 
            Key exchange protocols and key encapsulation mechanisms establish secret keys to communicate digital information confidentially over public channels. Lattice-based cryptography variants of these protocols are promising alternatives given their quantum-cryptanalysis resistance and implementation efficiency. Although lattice cryptosystems can be mathematically secure, their implementations have shown side-channel vulnerabilities. But such attacks largely presume collecting multiple measurements under a fixed key, leaving the more dangerous single-trace attacks unexplored. This article demonstrates successful single-trace power side-channel attacks on lattice-based key exchange and encapsulation protocols. Our attack targets both hardware and software implementations of matrix multiplications used in lattice cryptosystems. The crux of our idea is to apply a horizontal attack that makes hypotheses on several intermediate values within a single execution all relating to the same secret, and to combine their correlations for accurately estimating the secret key. We illustrate that the design of protocols combined with the nature of lattice arithmetic enables our attack. Since a straightforward attack suffers from false positives, we demonstrate a novel extend-and-prune procedure to recover the key by following the sequence of intermediate updates during multiplication. We analyzed two protocols, Frodo and FrodoKEM , and reveal that they are vulnerable to our attack. We implement both stand-alone hardware and RISC-V based software realizations and test the effectiveness of the proposed attack by using concrete parameters of these protocols on physical platforms with real measurements. We show that the proposed attack can estimate secret keys from a single power measurement with over 99% success rate.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    