skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1815562

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Cheon, Jung Hee; Tillich, Jean-Pierre (Ed.)
    Lattice-based cryptography relies on generating random bases which are difficult to fully reduce. Given a lattice basis (such as the private basis for a cryptosystem), all other bases are related by multiplication by matrices in GL(n,Z). We compare the strengths of various methods to sample random elements of GL(n,Z), finding some are stronger than others with respect to the problem of recognizing rotations of the Zn lattice. In particular, the standard algorithm of multiplying unipotent generators together (as implemented in Magma’s RandomSLnZ command) generates instances of this last problem which can be efficiently broken, even in dimensions nearing 1,500. Likewise, we find that the random basis generation method in one of the NIST Post-Quantum Cryptography competition submissions (DRS) generates instances which can be efficiently broken, even at its 256-bit security settings. Other random basis generation algorithms (some older, some newer) are described which appear to be much stronger. 
    more » « less
  3. Attribute-based encryption (ABE) is an advanced cryptographic tool and useful to build various types of access control systems. Toward the goal of making ABE more practical, we propose key-policy (KP) and ciphertext-policy (CP) ABE schemes, which first support unbounded sizes of attribute sets and policies with negation and multi-use of attributes, allow fast decryption, and are adaptively secure under a standard assumption, simultaneously. Our schemes are more expressive than previous schemes and efficient enough. To achieve the adaptive security along with the other properties, we refine the technique introduced by Kowalczyk and Wee (Eurocrypt’19) so that we can apply the technique more expressive ABE schemes. Furthermore, we also present a new proof technique that allows us to remove redundant elements used in their ABE schemes. We implement our schemes in 128-bit security level and present their benchmarks for an ordinary personal computer and smartphones. They show that all algorithms run in one second with the personal computer when they handle any policy or attribute set with one hundred attributes. [Note: this paper is not by the PI, but by Genise who was supported by the grant; support was acknowledged in this publication.] 
    more » « less
  4. Bhargavan, K.; Oswald, E.; Prabhakaran, M. (Ed.)
    We present two new related families of lattice trapdoors based on the inhomogeneous NTRU problem (iNTRU) defined in Genise et al. [16] (ASIACRYPT 2019). Our constructions are “gadget-based” and offer compact secret keys and preimages and compatibility with existing, efficient preimage sampling algorithms. Our trapdoors can be used as a fundamental building block in lattice-based schemes relying lattice trapdoors. In addition, we implemented our trapdoors using the PALISADE library. 
    more » « less