skip to main content


Title: Effects of Different Cosmic Ray Transport Models on Galaxy Formation
Abstract Cosmic rays (CRs) with ∼ GeV energies can contribute significantly to the energy and pressure budget in the interstellar, circumgalactic, and intergalactic medium (ISM, CGM, IGM). Recent cosmological simulations have begun to explore these effects, but almost all studies have been restricted to simplified models with constant CR diffusivity and/or streaming speeds. Physical models of CR propagation/scattering via extrinsic turbulence and self-excited waves predict transport coefficients which are complicated functions of local plasma properties. In a companion paper, we consider a wide range of observational constraints to identify proposed physically-motivated cosmic-ray propagation scalings which satisfy both detailed Milky Way (MW) and extra-galactic γ-ray constraints. Here, we compare the effects of these models relative to simpler “diffusion+streaming” models on galaxy and CGM properties at dwarf through MW mass scales. The physical models predict large local variations in CR diffusivity, with median diffusivity increasing with galacto-centric radii and decreasing with galaxy mass and redshift. These effects lead to a more rapid dropoff of CR energy density in the CGM (compared to simpler models), in turn producing weaker effects of CRs on galaxy star formation rates (SFRs), CGM absorption profiles and galactic outflows. The predictions of the more physical CR models tend to lie “in between” models which ignore CRs entirely and models which treat CRs with constant diffusivity.  more » « less
Award ID(s):
1715216 1715101 2108318
NSF-PAR ID:
10278898
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
ISSN:
0035-8711
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT The microphysics of ∼ GeV cosmic ray (CR) transport on galactic scales remain deeply uncertain, with almost all studies adopting simple prescriptions (e.g. constant diffusivity). We explore different physically motivated, anisotropic, dynamical CR transport scalings in high-resolution cosmological Feedback In Realistic Environment (FIRE) simulations of dwarf and ∼L* galaxies where scattering rates vary with local plasma properties motivated by extrinsic turbulence (ET) or self-confinement (SC) scenarios, with varying assumptions about e.g. turbulent power spectra on un-resolved scales, Alfvén-wave damping, etc. We self-consistently predict observables including γ-rays (Lγ), grammage, residence times, and CR energy densities to constrain the models. We demonstrate many non-linear dynamical effects (not captured in simpler models) tend to enhance confinement. For example, in multiphase media, even allowing arbitrary fast transport in neutral gas does not substantially reduce CR residence times (or Lγ), as transport is rate-limited by the ionized WIM and ‘inner CGM’ gaseous halo (104–106 K gas within $\lesssim 10\!-\!30\,$ kpc), and Lγ can be dominated by trapping in small ‘patches’. Most physical ET models contribute negligible scattering of ∼1–10 GeV CRs, but it is crucial to account for anisotropy and damping (especially of fast modes) or else scattering rates would violate observations. We show that the most widely assumed scalings for SC models produce excessive confinement by factors ≳100 in the warm ionized medium (WIM) and inner CGM, where turbulent and Landau damping dominate. This suggests either a breakdown of quasi-linear theory used to derive the CR transport parameters in SC, or that other novel damping mechanisms dominate in intermediate-density ionized gas. 
    more » « less
  2. ABSTRACT We present and study a large suite of high-resolution cosmological zoom-in simulations, using the FIRE-2 treatment of mechanical and radiative feedback from massive stars, together with explicit treatment of magnetic fields, anisotropic conduction and viscosity (accounting for saturation and limitation by plasma instabilities at high β), and cosmic rays (CRs) injected in supernovae shocks (including anisotropic diffusion, streaming, adiabatic, hadronic and Coulomb losses). We survey systems from ultrafaint dwarf ($M_{\ast }\sim 10^{4}\, \mathrm{M}_{\odot }$, $M_{\rm halo}\sim 10^{9}\, \mathrm{M}_{\odot }$) through Milky Way/Local Group (MW/LG) masses, systematically vary uncertain CR parameters (e.g. the diffusion coefficient κ and streaming velocity), and study a broad ensemble of galaxy properties [masses, star formation (SF) histories, mass profiles, phase structure, morphologies, etc.]. We confirm previous conclusions that magnetic fields, conduction, and viscosity on resolved ($\gtrsim 1\,$ pc) scales have only small effects on bulk galaxy properties. CRs have relatively weak effects on all galaxy properties studied in dwarfs ($M_{\ast } \ll 10^{10}\, \mathrm{M}_{\odot }$, $M_{\rm halo} \lesssim 10^{11}\, \mathrm{M}_{\odot }$), or at high redshifts (z ≳ 1–2), for any physically reasonable parameters. However, at higher masses ($M_{\rm halo} \gtrsim 10^{11}\, \mathrm{M}_{\odot }$) and z ≲ 1–2, CRs can suppress SF and stellar masses by factors ∼2–4, given reasonable injection efficiencies and relatively high effective diffusion coefficients $\kappa \gtrsim 3\times 10^{29}\, {\rm cm^{2}\, s^{-1}}$. At lower κ, CRs take too long to escape dense star-forming gas and lose their energy to collisional hadronic losses, producing negligible effects on galaxies and violating empirical constraints from spallation and γ-ray emission. At much higher κ CRs escape too efficiently to have appreciable effects even in the CGM. But around $\kappa \sim 3\times 10^{29}\, {\rm cm^{2}\, s^{-1}}$, CRs escape the galaxy and build up a CR-pressure-dominated halo which maintains approximate virial equilibrium and supports relatively dense, cool (T ≪ 106 K) gas that would otherwise rain on to the galaxy. CR ‘heating’ (from collisional and streaming losses) is never dominant. 
    more » « less
  3. ABSTRACT We investigate the impact of cosmic rays (CRs) on the circumgalactic medium (CGM) in FIRE-2 simulations, for ultra-faint dwarf through Milky Way (MW)-mass haloes hosting star-forming (SF) galaxies. Our CR treatment includes injection by supernovae, anisotropic streaming and diffusion along magnetic field lines, and collisional and streaming losses, with constant parallel diffusivity $\kappa \sim 3\times 10^{29}\, \mathrm{cm^2\ s^{-1}}$ chosen to match γ-ray observations. With this, CRs become more important at larger halo masses and lower redshifts, and dominate the pressure in the CGM in MW-mass haloes at z ≲ 1–2. The gas in these ‘CR-dominated’ haloes differs significantly from runs without CRs: the gas is primarily cool (a few ${\sim}10^{4}\,$ K), and the cool phase is volume-filling and has a thermal pressure below that needed for virial or local thermal pressure balance. Ionization of the ‘low’ and ‘mid’ ions in this diffuse cool gas is dominated by photoionization, with O vi columns ${\gtrsim}10^{14.5}\, \mathrm{cm^{-2}}$ at distances ${\gtrsim}150\, \mathrm{kpc}$. CR and thermal gas pressure are locally anticorrelated, maintaining total pressure balance, and the CGM gas density profile is determined by the balance of CR pressure gradients and gravity. Neglecting CRs, the same haloes are primarily warm/hot ($T\gtrsim 10^{5}\,$K) with thermal pressure balancing gravity, collisional ionization dominates, O vi columns are lower and Ne viii higher, and the cool phase is confined to dense filaments in local thermal pressure equilibrium with the hot phase. 
    more » « less
  4. ABSTRACT

    Many recent numerical studies have argued that cosmic rays (CRs) from supernovae (SNe) or active galactic nuclei (AGNs) could play a crucial role in galaxy formation, in particular by establishing a CR-pressure-dominated circumgalactic medium (CGM). But explicit CR-magnetohydrodynamics (CR-MHD) remains computationally expensive, and it is not clear whether those results can be applied to simulations that do not explicitly treat magnetic fields or resolved interstellar medium phase structure. We therefore present an intentionally extremely simplified ‘sub-grid’ model for CRs, which attempts to capture the key qualitative behaviors of greatest interest for those interested in simulations or semi-analytical models including some approximate CR effects on galactic (≳ kpc) scales, while imposing negligible computational overhead. The model is numerically akin to some recently developed sub-grid models for radiative feedback, and allows for a simple constant parametrization of the CR diffusivity and/or streaming speed; it allows for an arbitrary distribution of sources (proportional to black hole accretion rates or star–particle SNe rates or gas/galaxy star formation rates), and interpolates between the limits where CRs escape the galaxies with negligible losses and those where CRs lose most of their energy catastrophically before escape (relevant in e.g. starburst galaxies). The numerical equations are solved trivially alongside gravity in most codes. We compare this to explicit CR-MHD simulations and discuss where the (many) sub-grid approximations break down, and what drives the major sources of uncertainty.

     
    more » « less
  5. ABSTRACT

    The physics of Cosmic ray (CR) transport remains a key uncertainty in assessing whether CRs can produce galaxy-scale outflows consistent with observations. In this paper, we elucidate the physics of CR-driven galactic winds for CR transport dominated by diffusion. A companion paper considers CR streaming. We use analytic estimates validated by time-dependent spherically symmetric simulations to derive expressions for the mass-loss rate, momentum flux, and speed of CR-driven galactic winds, suitable for cosmological-scale or semi-analytic models of galaxy formation. For CR diffusion coefficients κ ≳ r0ci, where r0 is the base radius of the wind and ci is the isothermal gas sound speed, the asymptotic wind energy flux is comparable to that supplied to CRs, and the outflow rapidly accelerates to supersonic speeds. By contrast, for κ ≲ r0ci, CR-driven winds accelerate more slowly and lose most of their energy to gravity, a CR analogue of photon-tired stellar winds. Given CR diffusion coefficients estimated using Fermi gamma-ray observations of pion decay, we predict mass-loss rates in CR-driven galactic winds of the order of the star formation rate for dwarf and disc galaxies. The dwarf galaxy mass-loss rates are small compared to the mass-loadings needed to reconcile the stellar and dark matter halo mass functions. For nuclear starbursts (e.g. M82, Arp 220), CR diffusion and pion losses suppress the CR pressure in the galaxy and the strength of CR-driven winds. We discuss the implications of our results for interpreting observations of galactic winds and for the role of CRs in galaxy formation.

     
    more » « less