skip to main content


Title: No missing photons for reionization: moderate ionizing photon escape fractions from the FIRE-2 simulations
ABSTRACT We present the escape fraction of hydrogen ionizing photons (fesc) from a sample of 34 high-resolution cosmological zoom-in simulations of galaxies at z ≥ 5 in the Feedback in Realistic Environments project, post-processed with a Monte Carlo radiative transfer code for ionizing radiation. Our sample consists of 8500 haloes in Mvir ∼ 108–$10^{12}\, M_{\odot }$ (M* ∼ 104–$10^{10}\, M_{\odot }$) at z = 5–12. We find the sample average 〈fesc〉increases with halo mass for Mvir ∼ 108–$10^{9.5}\, M_{\odot }$, becomes nearly constant for 109.5–$10^{11}\, M_{\odot }$, and decreases at ${\gtrsim}10^{11}\, M_{\odot }$. Equivalently, 〈fesc〉 increases with stellar mass up to $M_{\ast }\sim 10^8\, M_{\odot }$ and decreases at higher masses. Even applying single-star stellar population synthesis models, we find a moderate 〈fesc〉 ∼ 0.2 for galaxies at $M_{\ast }\sim 10^8\, M_{\odot }$. Nearly half of the escaped ionizing photons come from stars 1–3 Myr old and the rest from stars 3–10 Myr old. Binaries only have a modest effect, boosting 〈fesc〉 by ∼25–35 per cent and the number of escaped photons by 60–80 per cent. Most leaked ionizing photons are from vigorously star-forming regions that usually contain a feedback-driven kpc-scale superbubble surrounded by a dense shell. The shell is forming stars while accelerated, so new stars formed earlier in the shell are already inside the shell. Young stars in the bubble and near the edge of the shell can fully ionize some low-column-density paths pre-cleared by feedback, allowing a large fraction of their ionizing photons to escape. The decrease of 〈fesc〉 at the high-mass end is due to dust attenuation, while at the low-mass end, 〈fesc〉 decreases owing to inefficient star formation and hence feedback. At fixed mass, 〈fesc〉 tends to increase with redshift. Although the absolute 〈fesc〉does not fully converge with resolution in our simulations, the mass- and redshift-dependence of 〈fesc〉 is likely robust. Our simulations produce sufficient ionizing photons for cosmic reionization.  more » « less
Award ID(s):
1715216 1715101
NSF-PAR ID:
10278905
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
498
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
2001 to 2017
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A fundamental requirement for reionizing the Universe is that a sufficient fraction of the ionizing photons emitted by galaxies successfully escapes into the intergalactic medium. However, due to the scarcity of high-redshift observational data, the sources driving reionization remain uncertain. In this work, we calculate the ionizing escape fractions (fesc) of reionization-era galaxies from the state-of-the-art thesan simulations, which combine an accurate radiation-hydrodynamic solver (arepo-rt) with the well-tested IllustrisTNG galaxy formation model to self-consistently simulate both small-scale galaxy physics and large-scale reionization throughout a large patch of the universe ($L_\text{box} = 95.5\, \text{cMpc}$). This allows the formation of numerous massive haloes ($M_\text{halo} \gtrsim 10^{10}\, {\text{M}_{\odot }}$), which are often statistically underrepresented in previous studies but are believed to be important to achieving rapid reionization. We find that low-mass galaxies ($M_\text{stars} \lesssim 10^7\, {\text{M}_{\odot }}$) are the main drivers of reionization above z ≳ 7, while high-mass galaxies ($M_\text{stars} \gtrsim 10^8\, {\text{M}_{\odot }}$) dominate the escaped ionizing photon budget at lower redshifts. We find a strong dependence of fesc on the effective star formation rate (SFR) surface density defined as the SFR per gas mass per escape area, i.e. $\bar{\Sigma }_\text{SFR} = \text{SFR}/M_\text{gas}/R_{200}^2$. The variation in halo escape fractions decreases for higher mass haloes, which can be understood from the more settled galactic structure, SFR stability, and fraction of sightlines within each halo significantly contributing to the escaped flux. Dust is capable of reducing the escape fractions of massive galaxies, but the impact on the global fesc depends on the dust model. Finally, active galactic nuclei are unimportant for reionization in thesan and their escape fractions are lower than stellar ones due to being located near the centres of galaxy gravitational potential wells. 
    more » « less
  2. ABSTRACT

    We measure escape fractions, fesc, of ionizing radiation from galaxies in the sphinx suite of cosmological radiation-hydrodynamical simulations of reionization, resolving haloes with $M_{\rm vir}\gtrsim 7.5 \times 10^7 \ {\rm {M}_{\odot }}$ with a minimum cell width of ≈10 pc. Our new and largest 20 co-moving Mpc wide volume contains tens of thousands of star-forming galaxies with halo masses up to a few times 1011 M⊙. The simulated galaxies agree well with observational constraints of the ultraviolet (UV) luminosity function in the Epoch of Reionization. The escape fraction fluctuates strongly in individual galaxies over time-scales of a few Myr, due to its regulation by supernova and radiation feedback, and at any given time a tiny fraction of star-forming galaxies emits a large fraction of the ionizing radiation escaping into the intergalactic medium. Statistically, fesc peaks in intermediate-mass, intermediate-brightness, and low-metallicity galaxies (M* ≈ 107 M⊙, M1500 ≈ −17, Z ≲ 5 × 10−3 Z⊙), dropping strongly for lower and higher masses, brighter and dimmer galaxies, and more metal-rich galaxies. The escape fraction correlates positively with both the short-term and long-term specific star formation rate. According to sphinx, galaxies too dim to be yet observed, with ${M_{1500}}\gtrsim -17$, provide about 55 per cent of the photons contributing to reionization. The global averaged fesc naturally decreases with decreasing redshift, as predicted by UV background models and low-redshift observations. This evolution is driven by decreasing specific star formation rates over cosmic time.

     
    more » « less
  3. null (Ed.)
    ABSTRACT We study the escape fraction of ionizing photons (fesc) in two cosmological zoom-in simulations of galaxies in the reionization era with halo mass Mhalo ∼ 1010 and $10^{11}\, \mathrm{ M}_{\odot }$ (stellar mass M* ∼ 107 and $10^9\, \mathrm{ M}_{\odot }$) at z = 5 from the Feedback in Realistic Environments project. These simulations explicitly resolve the formation of proto-globular clusters (GCs) self-consistently, where 17–39 per cent of stars form in bound clusters during starbursts. Using post-processing Monte Carlo radiative transfer calculations of ionizing radiation, we compute fesc from cluster stars and non-cluster stars formed during a starburst over ∼100 Myr in each galaxy. We find that the averaged fesc over the lifetime of a star particle follows a similar distribution for cluster stars and non-cluster stars. Clusters tend to have low fesc in the first few Myr, presumably because they form preferentially in more extreme environments with high optical depths; the fesc increases later as feedback starts to destroy the natal cloud. On the other hand, some non-cluster stars formed between cluster complexes or in the compressed shells at the front of a superbubble can also have high fesc. We find that cluster stars on average have comparable fesc to non-cluster stars. This result is robust across several star formation models in our simulations. Our results suggest that the fraction of ionizing photons from proto-GCs to cosmic reionization is comparable to the cluster formation efficiencies in high-redshift galaxies and thus proto-GCs likely contribute an appreciable fraction of photons but are not the dominant sources for reionization. 
    more » « less
  4. Abstract

    High-resolution numerical simulations including feedback and aimed at calculating the escape fraction (fesc) of hydrogen-ionizing photons often assume stellar radiation based on single-stellar population synthesis models. However, strong evidence suggests the binary fraction of massive stars is ≳70%. Moreover, simulations so far have yielded values offescfalling only on the lower end of the ∼10%–20% range, the amount presumed necessary to reionize the universe. Analyzing a high-resolution (4 pc) cosmological radiation-hydrodynamic simulation, we study howfescchanges when we include two different products of binary stellar evolution—stars stripped of their hydrogen envelopes and massive blue stragglers. Both produce significant amounts of ionizing photons 10–200 Myr after each starburst. We find the relative importance of these photons to be amplified with respect to escaped ionizing photons, because peaks in star formation rates (SFRs) andfescare often out of phase by this 10–200 Myr. Additionally, low-mass, bursty galaxies emit Lyman continuum radiation primarily from binary products when SFRs are low. Observations of these galaxies by the James Webb Space Telescope could provide crucial information on the evolution of binary stars as a function of redshift. Overall, including stripped stars and massive blue stragglers increases our photon-weighted mean escape fraction () by ∼13% and ∼10%, respectively, resulting in. Our results emphasize that using updated stellar population synthesis models with binary stellar evolution provides a more sound physical basis for stellar reionization.

     
    more » « less
  5. ABSTRACT

    The ionizing photon escape fraction [Lyman continuum (LyC) fesc] of star-forming galaxies is the single greatest unknown in the reionization budget. Stochastic sightline effects prohibit the direct separation of LyC leakers from non-leakers at significant redshifts. Here we circumvent this uncertainty by inferring fesc using resolved (R > 4000) Lyman α (Lyα) profiles from the X-SHOOTER Lyα survey at z = 2 (XLS-z2). With empirically motivated criteria, we use Lyα profiles to select leakers ($f_{\mathrm{ esc}} > 20{{\ \rm per\ cent}}$) and non-leakers ($f_{\mathrm{ esc}} < 5{{\ \rm per\ cent}}$) from a representative sample of >0.2L* Lyman α emitters (LAEs). We use median stacked spectra of these subsets over λrest ≈ 1000–8000 Å to investigate the conditions for LyC fesc. Our stacks show similar mass, metallicity, MUV, and βUV. We find the following differences between leakers versus non-leakers: (i) strong nebular C iv and He ii emission versus non-detections; (ii) [O iii]/[O ii] ≈ 8.5 versus ≈3; (iii) Hα/Hβ indicating no dust versus E(B − V) ≈ 0.3; (iv) Mg ii emission close to the systemic velocity versus redshifted, optically thick Mg ii; and (v) Lyα fesc of ${\approx} 50{{\ \rm per\ cent}}$ versus ${\approx} 10{{\ \rm per\ cent}}$. The extreme equivalent widths (EWs) in leakers ([O iii]+$\mathrm{ H}\beta \approx 1100$ Å rest frame) constrain the characteristic time-scale of LyC escape to ≈3–10 Myr bursts when short-lived stars with the hardest ionizing spectra shine. The defining traits of leakers – extremely ionizing stellar populations, low column densities, a dust-free, high-ionization state interstellar medium (ISM) – occur simultaneously in the $f_{\rm esc} > 20{{\ \rm per\ cent}}$ stack, suggesting they are causally connected, and motivating why indicators like [O iii]/[O ii] may suffice to constrain fesc at z > 6 with the James Webb Space Telescope (JWST). The leakers comprise half of our sample, have a median LyC$f_{\rm esc} \approx 50{{\ \rm per\ cent}}$ (conservative range: $20\!-\!55{{\ \rm per\ cent}}$), and an ionizing production efficiency $\log ({\xi _{\rm {ion}}/\rm {Hz\ erg^{-1}}})\approx 25.9$ (conservative range: 25.7–25.9). These results show LAEs – the type of galaxies rare at z ≈ 2, but that become the norm at higher redshift – are highly efficient ionizers, with extreme ξion and prolific fesc occurring in sync.

     
    more » « less