skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impact of a tropical forest blowdown on aboveground carbon balance
Abstract Field measurements demonstrate a carbon sink in the Amazon and Congo basins, but the cause of this sink is uncertain. One possibility is that forest landscapes are experiencing transient recovery from previous disturbance. Attributing the carbon sink to transient recovery or other processes is challenging because we do not understand the sensitivity of conventional remote sensing methods to changes in aboveground carbon density (ACD) caused by disturbance events. Here we use ultra-high-density drone lidar to quantify the impact of a blowdown disturbance on ACD in a lowland rain forest in Costa Rica. We show that the blowdown decreased ACD by at least 17.6%, increased the number of canopy gaps, and altered the gap size-frequency distribution. Analyses of a canopy-height transition matrix indicate departure from steady-state conditions. This event will initiate a transient sink requiring an estimated 24–49 years to recover pre-disturbance ACD. Our results suggest that blowdowns of this magnitude and extent can remain undetected by conventional satellite optical imagery but are likely to alter ACD decades after they occur.  more » « less
Award ID(s):
1852710
PAR ID:
10279262
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Temperate deciduous forests are an important contributor to the global carbon (C) sink. However, changes in environmental conditions and natural disturbances such as insect infestations can impact carbon sequestration capabilities of these forests. While, insect infestations are expected to increase in warmer future climates, there is a lack of knowledge on the quantitative impact of these natural disturbances on the carbon balance of temperate deciduous forests. In 2021, a record-breaking defoliation, caused by the spongy moth (Lymantria dispar dispar (LDD), formerly knows as the gypsy moth) occurred in eastern North America. In this study, we assess the impact of this spongy moth defoliation on carbon uptake in a mature oak-dominated temperate forest in the Great Lakes region in Canada, using eddy covariance flux data from 2012 to 2022. Study results showed that the forest was a large C sink with mean annual net ecosystem productivity (NEP) of 207 ± 77 g C m–2 yr−1 from 2012 to 2022, excluding 2021, which experienced the infestation. Over this period mean annual gross ecosystem productivity (GEP) was 1,398 ± 137 g C m–2 yr−1, while ecosystem respiration (RE) was 1,209 ± 139 g C m–2 yr−1. However, in 2021 due to defoliation in the early growing season, annual GEP of the forest declined to 959 g C m–2 yr−1, while annual RE increased to 1,345 g C m–2 yr−1 causing the forest to become a large source of C with annual NEP of -351 g C m–2 yr−1. The forest showed a rapid recovery from this major disturbance event, with annual GEP, RE, and NEP values of 1,671, 1,287, and 298 g C m–2 yr−1, respectively in 2022 indicating that the forest was once again a large C sink. This study demonstrates that major transient natural disturbances under changing climate can have a significant impact on forest C dynamics. The extent to which North American temperate forests will remain a major C sink will depend on the severity and intensity of these disturbance events and the rate of recovery of forests following disturbances. 
    more » « less
  2. ABSTRACT Mangrove forests are typically considered resilient to natural disturbances, likely caused by the evolutionary adaptation of species‐specific traits. These ecosystems play a vital role in the global carbon cycle and are responsible for an outsized contribution to carbon burial and enhanced sedimentation rates. Using eddy covariance data from two coastal mangrove forests in the Florida Coastal Everglades, we evaluated the impact hurricanes have on mangrove forest structure and function by measuring recovery to pre‐disturbance conditions following Hurricane Wilma in 2005 and Hurricane Irma in 2017. We determined the “recovery debt,” the deficit in ecosystem structure and function following a disturbance, using the leaf area index (LAI) and the net ecosystem exchange (NEE) of carbon dioxide (CO2). Calculated as the cumulative deviation from pre‐disturbance conditions, the recovery debt incorporated the recapture of all the carbon lost due to the disturbance. In Everglades mangrove forests, LAI returned to pre‐disturbance levels within a year, and ecosystem respiration and maximum photosynthetic rates took much longer, resulting in an initial recovery debt of 178 g C m−2at the tall forest with limited impacts at the scrub forest. At the landscape scale, the initial recovery debt was 0.40 Mt C, and in most coastal mangrove forests, all lost carbon was recovered within just 4 years. While high‐intensity storms could have prolonged impacts on the structure of subtropical forests, fast canopy recovery suggests these ecosystems will remain strong carbon sinks. 
    more » « less
  3. null (Ed.)
    Abstract. With projected increasing intensity of hurricanes and largeuncertainty in the path of forest recovery from hurricanes, studies areneeded to understand the fundamental response of forests to canopy openingand debris deposition: the response of the abiotic factors underneath thecanopy. Through two manipulative experiments and instrumenting prior toHurricane Maria (2017) in the Luquillo Experimental Forest (LEF) ofPuerto Rico, this study found a long recovery time of primary abioticfactors (beneath canopy light, throughfall, and temperature) influenced bythe disturbance of canopy opening, as well as complex responses by the secondaryabiotic factors (relative humidity, soil moisture, and leaf saturation)influenced by the disturbance of the primary factors. Recovery took 4–5 years for beneath canopy light, while throughfall recovery took 4–9 yearsand neither had recovered when Hurricane Maria passed 3 years after thesecond experiment. Air and soil temperature seemingly recovered quickly fromeach disturbance (<2.5 years in two experiments for ∼+1 ∘C of change); however, temperature was the most importantmodulator of secondary factors, which followed the long-term patterns of thethroughfall. While the soil remained wetter and relative humidity in the airstayed lower until recovery, leaves in the litter and canopy were wetter anddrier, with evidence that leaves dry out faster in low rainfall and saturatefaster in high rainfall after disturbance. Comparison of satellite and fielddata before and after the 2017 hurricanes showed the utility of satellitesin expanding the data coverage, but the muted response of the satellite datasuggests they measure dense forest as well as thin forest that is not asdisturbed by hurricanes. Thus, quick recovery times recorded by satellitesshould not be assumed representative of all the forest. Data recordsspanning the multiple manipulative experiments followed by HurricaneMaria in the LEF provide evidence that intermediate hurricane frequencyhas the most extreme abiotic response (with evidence on almost all abioticfactors tested) versus infrequent or frequent hurricanes. 
    more » « less
  4. Abstract Growing evidence suggests that liana competition with trees is threatening the global carbon sink by slowing the recovery of forests following disturbance. A recent theory based on local and regional evidence further proposes that the competitive success of lianas over trees is driven by interactions between forest disturbance and climate. We present the first global assessment of liana–tree relative performance in response to forest disturbance and climate drivers. Using an unprecedented dataset, we analysed 651 vegetation samples representing 26,538 lianas and 82,802 trees from 556 unique locations worldwide, derived from 83 publications. Results show that lianas perform better relative to trees (increasing liana‐to‐tree ratio) when forests are disturbed, under warmer temperatures and lower precipitation and towards the tropical lowlands. We also found that lianas can be a critical factor hindering forest recovery in disturbed forests experiencing liana‐favourable climates, as chronosequence data show that high competitive success of lianas over trees can persist for decades following disturbances, especially when the annual mean temperature exceeds 27.8°C, precipitation is less than 1614 mm and climatic water deficit is more than 829 mm. These findings reveal that degraded tropical forests with environmental conditions favouring lianas are disproportionately more vulnerable to liana dominance and thus can potentially stall succession, with important implications for the global carbon sink, and hence should be the highest priority to consider for restoration management. 
    more » « less
  5. Across the globe, the forest carbon sink is increasingly vulnerable to an expanding array of low- to moderate-severity disturbances. However, some forest ecosystems exhibit functional resistance (i.e., the capacity of ecosystems to continue functioning as usual) following disturbances such as extreme weather events and insect or fungal pathogen outbreaks. Unlike severe disturbances (e.g., stand-replacing wildfires), moderate severity disturbances do not always result in near-term declines in forest production because of the potential for compensatory growth, including enhanced subcanopy production. Community-wide shifts in subcanopy plant functional traits, prompted by disturbance-driven environmental change, may play a key mechanistic role in resisting declines in net primary production (NPP) up to thresholds of canopy loss. However, the temporal dynamics of these shifts, as well as the upper limits of disturbance for which subcanopy production can compensate, remain poorly characterized. In this study, we leverage a 4-year dataset from an experimental forest disturbance in northern Michigan to assess subcanopy community trait shifts as well as their utility in predicting ecosystem NPP resistance across a wide range of implemented disturbance severities. Through mechanical girdling of stems, we achieved a gradient of severity from 0% (i.e., control) to 45, 65, and 85% targeted gross canopy defoliation, replicated across four landscape ecosystems broadly representative of the Upper Great Lakes ecoregion. We found that three of four examined subcanopy community weighted mean (CWM) traits including leaf photosynthetic rate ( p = 0.04), stomatal conductance ( p = 0.07), and the red edge normalized difference vegetation index ( p < 0.0001) shifted rapidly following disturbance but before widespread changes in subcanopy light environment triggered by canopy tree mortality. Surprisingly, stimulated subcanopy production fully compensated for upper canopy losses across our gradient of experimental severities, achieving complete resistance (i.e., no significant interannual differences from control) of whole ecosystem NPP even in the 85% disturbance treatment. Additionally, we identified a probable mechanistic switch from nutrient-driven to light-driven trait shifts as disturbance progressed. Our findings suggest that remotely sensed traits such as the red edge normalized difference vegetation index (reNDVI) could be particularly sensitive and robust predictors of production response to disturbance, even across compositionally diverse forests. The potential of leaf spectral indices to predict post-disturbance functional resistance is promising given the capabilities of airborne to satellite remote sensing. We conclude that dynamic functional trait shifts following disturbance can be used to predict production response across a wide range of disturbance severities. 
    more » « less