Abstract Lignin is an aromatic‐rich biomass polymer that is cheap, abundant, and sustainable. However, its application in the solid electrolyte field is rare due to challenges in well‐defined polymer synthesis. Herein, the synthesis of lignin‐graft‐poly(ethylene glycol) (PEG) and its conductivity test for a solid electrolyte application are demonstrated. The main steps of synthesis include functionalization of natural lignin's hydroxyl to alkene, followed by graft‐copolymerization of PEG thiol to the lignin via photoredox thiol‐ene reaction. Two lignin‐graft‐PEGs are prepared having 22 wt% lignin (lignin‐graft‐PEG 550) and 34 wt% lignin (lignin‐graft‐PEG 2000). Then, new polymer electrolytes for conductivity tests are prepared via addition of lithium bis‐trifluoromethanesulfonimide. The polymer graft electrolytes exhibit ionic conductivity up to 1.4 × 10−4 S cm−1 at 35 °C. The presence of lignin moderately impacts conductivity at elevated temperature compared to homopolymer PEG. Furthermore, the ionic conductivity of lignin‐graft‐PEG at ambient temperature is significantly higher than homopolymer PEG precedents.
more »
« less
Lignin-based Solid Polymer Electrolytes: Lignin-graft-Poly(ethylene glycol)
- Award ID(s):
- 1735968
- PAR ID:
- 10279271
- Date Published:
- Journal Name:
- Macromolecular rapid communications
- ISSN:
- 1521-3927
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Lignin, an abundant and renewable biopolymer, has gained significant attention as a sustainable modifier and building block in polymeric materials. Recent advancements highlight its potential to tailor mechanical, thermal, and barrier properties of polymers while offering a greener alternative to petroleum-based additives. This review provides an updated perspective on the incorporation of lignin into various polymer matrices, focusing on lignin modification techniques, structure–property relationships, and emerging applications. Special emphasis is given to recent innovations in lignin functionalization and its role in developing high-performance, biodegradable, and recyclable materials such as polyurethanes, epoxy resins, phenol-formaldehyde resins, lignin-modified composites, and lignin-based films, coatings, elastomers, and adhesives. These lignin-based materials are gaining attention for potential applications in construction, automated industries, packaging, textiles, wastewater treatment, footwear, supporting goods, automobiles, printing rollers, sealants, and binders.more » « less
An official website of the United States government

