skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Deep Graph Learning for Circuit Deobfuscation
Circuit obfuscation is a recently proposed defense mechanism to protect the intellectual property (IP) of digital integrated circuits (ICs) from reverse engineering. There have been effective schemes, such as satisfiability (SAT)-checking based attacks that can potentially decrypt obfuscated circuits, which is called deobfuscation. Deobfuscation runtime could be days or years, depending on the layouts of the obfuscated ICs. Hence, accurately pre-estimating the deobfuscation runtime within a reasonable amount of time is crucial for IC designers to optimize their defense. However, it is challenging due to (1) the complexity of graph-structured circuit; (2) the varying-size topology of obfuscated circuits; (3) requirement on efficiency for deobfuscation method. This study proposes a framework that predicts the deobfuscation runtime based on graph deep learning techniques to address the challenges mentioned above. A conjunctive normal form (CNF) bipartite graph is utilized to characterize the complexity of this SAT problem by analyzing the SAT attack method. Multi-order information of the graph matrix is designed to identify the essential features and reduce the computational cost. To overcome the difficulty in capturing the dynamic size of the CNF graph, an energy-based kernel is proposed to aggregate dynamic features into an identical vector space. Then, we designed a framework, Deep Survival Analysis with Graph (DSAG), which integrates energy-based layers and predicts runtime inspired by censored regression in survival analysis. Integrating uncensored data with censored data, the proposed model improves the standard regression significantly. DSAG is an end-to-end framework that can automatically extract the determinant features for deobfuscation runtime. Extensive experiments on benchmarks demonstrate its effectiveness and efficiency.  more » « less
Award ID(s):
2113350 2103592
PAR ID:
10279458
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Big Data
Volume:
4
ISSN:
2624-909X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Logic locking has emerged as a promising solution to protect integrated circuits against piracy and tampering. However, the security provided by existing logic locking techniques is often thwarted by Boolean satisfiability (SAT)-based oracle-guided attacks. Criteria for successful SAT attacks on locked circuits include: (i) the circuit under attack is fully combinational, or (ii) the attacker has scan chain access. To address the threat posed by SAT-based attacks, we adopt the dynamically obfuscated scan chain (DOSC) architecture and illustrate its resiliency against the SAT attacks when inserted into the scan chain of an obfuscated design. We demonstrate, both mathematically and experimentally, that DOSC exponentially increases the resiliency against key extraction by SAT attack and its variants. Our results show that the mathematical estimation of attack complexity correlates to the experimental results with an accuracy of 95% or better. Along with the formal proof, we model DOSC architecture to its equivalent combinational circuit and perform SAT attack to evaluate its resiliency empirically. Our experiments demonstrate that SAT attack on DOSC-inserted benchmark circuits timeout at minimal test time overhead, and while DOSC requires less than 1% area and power overhead. 
    more » « less
  2. In this paper, we propose a canonical prune-and-SAT (CP&SAT) attack for breaking state-of-the-art routing-based obfuscation techniques. In the CP&SAT attack, we first encode the key-programmable routing blocks (keyRBs) based on an efficient SAT encoding mechanism suited for detailed routing constraints, and then efficiently re-encode and reduce the CNF corresponded to the keyRB using a bounded variable addition (BVA) algorithm. In the CP&SAT attack, this is done before subjecting the circuit to the SAT attack. We illustrate that this encoding and BVA-based pre-processing significantly reduces the size of the CNF corresponded to the routing-based obfuscated circuit, in the result of which we observe 100% success rate for breaking prior art routing-based obfuscation techniques. Further, we propose a new intercorrelated logic and routing locking technique, or in short InterLock, as a countermeasure to mitigate the CP&SAT attack. In Interlock, in addition to hiding the connectivity, a part of the logic (gates) in the selected timing paths are also implemented in the keyRB(s). We illustrate that when the logic gates are twisted with keyRBs, the BVA could not provide any advantage as a pre-processing step. Our experimental results show that, by using InterLock, with only three 8×8 or only two 16×16 keyRBs (twisted with actual logic gates), the resilience against existing attacks as well as our new proposed CP&SAT attack would be guaranteed while, on average, the delay/area overhead is less than 10% for even medium-size benchmark circuits. 
    more » « less
  3. Cyclic logic encryption is newly proposed in the area of hardware security. It introduces feedback cycles into the circuit to defeat existing logic decryption techniques. To ensure that the circuit is acyclic under the correct key, CycSAT is developed to add the acyclic condition as a CNF formula to the SAT-based attack. However, we found that it is impossible to capture all cycles in any graph with any set of feedback signals as done in the CycSAT algorithm. In this paper, we propose a behavioral SAT-based attack called BeSAT. Be-SAT observes the behavior of the encrypted circuit on top of the structural analysis, so the stateful and oscillatory keys missed by CycSAT can still be blocked. The experimental results show that BeSAT successfully overcomes the drawback of CycSAT. 
    more » « less
  4. Modern semiconductor manufacturing often leverages a fabless model in which design and fabrication are partitioned. This has led to a large body of work attempting to secure designs sent to an untrusted third party through obfuscation methods. On the other hand, efficient de-obfuscation attacks have been proposed, such as Boolean Satisfiability attacks (SAT attacks). However, there is a lack of frameworks to validate the security and functionality of obfuscated designs. Additionally, unconventional obfuscated design flows, which vary from one obfuscation to another, have been key impending factors in realizing logic locking as a mainstream approach for securing designs. In this work, we address these two issues for Lookup Table-based obfuscation. We study both Volatile and Non-volatile versions of LUT-based obfuscation and develop a framework to validate SAT runtime using machine learning. We can achieve unparallel SAT-resiliency using LUT-based obfuscation while incurring 7% area and less than 1% power overheads. Following this, we discuss and implement a validation flow for obfuscated designs. We then fabricate a chip consisting of several benchmark designs and a RISC-V CPU in TSMC 65nm for post functionality validation. We show that the design flow and SAT-runtime validation can easily integrate LUT-based obfuscation into existing CAD tools while adding minimal verification overhead. Finally, we justify SAT-resilient LUT-based obfuscation as a promising candidate for securing designs. 
    more » « less
  5. In this paper, we introduce the Satisfiability Modulo Theory (SMT) attack on obfuscated circuits. The proposed attack is the superset of Satisfiability (SAT) attack, with many additional features. It uses one or more theory solvers in addition to its internal SAT solver. For this reason, it is capable of modeling far more complex behaviors and could formulate much stronger attacks. In this paper, we illustrate that the use of theory solvers enables the SMT to carry attacks that are not possible by SAT formulated attacks. As an example of its capabilities, we use the SMT attack to break a recent obfuscation scheme that uses key values to alter delay properties (setup and hold time) of a circuit to remain SAT hard. Considering that the logic delay is not a Boolean logical property, the targeted obfuscation mechanism is not breakable by a SAT attack. However, in this paper, we illustrate that the proposed SMT attack, by deploying a simple graph theory solver, can model and break this obfuscation scheme in few minutes. We describe how the SMT attack could be used in one of four different attack modes: (1) We explain how SMT attack could be reduced to a SAT attack, (2) how the SMT attack could be carried out in Eager, and (3) Lazy approach, and finally (4) we introduce the Accelerated SMT (AccSMT) attack that offers significant speed-up to SAT attack. Additionally, we explain how AccSMT attack could be used as an approximate attack when facing SMT-Hard obfuscation schemes. 
    more » « less