skip to main content


Title: Design Principles for Mobile Brain-Body Imaging Devices with Optimized Ergonomics
Mobile brain-body imaging (MoBI) technology allows the study of the brain in action and the context of complex natural settings. MoBI devices are wearable devices that typically record the scalp electroencephalogram (EEG) and head motion of the user. MoBI systems have applications in neuroscience, rehabilitation, design, and other applications. Here, we propose design principles for MoBI systems for use in brain-machine interfaces for rehabilitation by individuals with movement disabilities. This design study discusses the validity of the process of utilizing 3D anthropometric data as a basis to design a MoBI headset for an optimized fit and ergonomics. The study also discusses the need for ensuring that EEG sensors keep constant contact with the scalp and face for the best scan quality. Moreover, the need for singlehanded correct positioning of the headset is discussed to address disabilities in the older populations and clinical populations with motor impairments.  more » « less
Award ID(s):
1827769 1650536 1757949
NSF-PAR ID:
10279568
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Ahram, Tareq Z; Falcão, Christianne S.
Date Published:
Journal Name:
Advances in Usability, User Experience, Wearable and Assistive Technology
Volume:
275
ISSN:
2367-3370
Page Range / eLocation ID:
3-10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Objective: We designed and validated a wireless, low-cost, easy-to-use, mobile, dry-electrode headset for scalp electroencephalography (EEG) recordings for closed-loop brain–computer (BCI) interface and internet-of-things (IoT) applications. Approach: The EEG-based BCI headset was designed from commercial off-the-shelf (COTS) components using a multi-pronged approach that balanced interoperability, cost, portability, usability, form factor, reliability, and closed-loop operation. Main Results: The adjustable headset was designed to accommodate 90% of the population. A patent-pending self-positioning dry electrode bracket allowed for vertical self-positioning while parting the user’s hair to ensure contact of the electrode with the scalp. In the current prototype, five EEG electrodes were incorporated in the electrode bracket spanning the sensorimotor cortices bilaterally, and three skin sensors were included to measure eye movement and blinks. An inertial measurement unit (IMU) provides monitoring of head movements. The EEG amplifier operates with 24-bit resolution up to 500 Hz sampling frequency and can communicate with other devices using 802.11 b/g/n WiFi. It has high signal–to–noise ratio (SNR) and common–mode rejection ratio (CMRR) (121 dB and 110 dB, respectively) and low input noise. In closed-loop BCI mode, the system can operate at 40 Hz, including real-time adaptive noise cancellation and 512 MB of processor memory. It supports LabVIEW as a backend coding language and JavaScript (JS), Cascading Style Sheets (CSS), and HyperText Markup Language (HTML) as front-end coding languages and includes training and optimization of support vector machine (SVM) neural classifiers. Extensive bench testing supports the technical specifications and human-subject pilot testing of a closed-loop BCI application to support upper-limb rehabilitation and provides proof-of-concept validation for the device’s use at both the clinic and at home. Significance: The usability, interoperability, portability, reliability, and programmability of the proposed wireless closed-loop BCI system provides a low-cost solution for BCI and neurorehabilitation research and IoT applications. 
    more » « less
  2. null (Ed.)
    There have been significant advances in the technologies for robot-assisted lower-limb rehabilitation in the last decade. However, the development of similar systems for children has been slow despite the fact that children with conditions such as cerebral palsy (CP), spina bifida (SB) and spinal cord injury (SCI) can benefit greatly from these technologies. Robotic assisted gait therapy (RAGT) has emerged as a way to increase gait training duration and intensity while decreasing the risk of injury to therapists. Robotic walking devices can be coupled with motion sensing, electromyography (EMG), scalp electroencephalography (EEG) or other noninvasive methods of acquiring information about the user’s intent to design Brain-Computer Interfaces (BCI) for neuromuscular rehabilitation and control of powered exoskeletons. For users with SCI, BCIs could provide a method of overground mobility closer to the natural process of the brain controlling the body’s movement during walking than mobility by wheelchair. For adults there are currently four FDA approved lower-limb exoskeletons that could be incorporated into such a BCI system, but there are no similar devices specifically designed for children, who present additional physical, neurological and cognitive developmental challenges. The current state of the art for pediatric RAGT relies on large clinical devices with high costs that limit accessibility. This can reduce the amount of therapy a child receives and slow rehabilitation progress. In many cases, lack of gait training can result in a reduction in the mobility, independence and overall quality of life for children with lower-limb disabilities. Thus, it is imperative to facilitate and accelerate the development of pediatric technologies for gait rehabilitation, including their regulatory path. In this paper an overview of the U.S. Food and Drug Administration (FDA) clearance/approval process is presented. An example device has been used to navigate important questions facing device developers focused on providing lower limb rehabilitation to children in home-based or other settings beyond the clinic. 
    more » « less
  3. The use of scalp electroencephalography (EEG) signals for brain-computer interface (BCI) to control end effectors in real time, while providing mobile capabilities for use at home neurorehabilitation, requires of software and hardware robust solutions. Moreover, to ensure democratized access to these systems, low cost, interoperability, and ease of use are essential. These challenges were addressed in the design, development and validation of the NeuroExo BCI System. As a proof of concept, the system was tested with an exoskeleton system for upper-limb stroke rehabilitation as the end effector. 
    more » « less
  4. Abstract Objective. Transcutaneous spinal cord stimulation (TSS) has been shown to be a promising non-invasive alternative to epidural spinal cord stimulation for improving outcomes of people with spinal cord injury (SCI). However, studies on the effects of TSS on cortical activation are limited. Our objectives were to evaluate the spatiotemporal effects of TSS on brain activity, and determine changes in functional connectivity under several different stimulation conditions. As a control, we also assessed the effects of functional electrical stimulation (FES) on cortical activity. Approach . Non-invasive scalp electroencephalography (EEG) was recorded during TSS or FES while five neurologically intact participants performed one of three lower-limb tasks while in the supine position: (1) A no contraction control task, (2) a rhythmic contraction task, or (3) a tonic contraction task. After EEG denoising and segmentation, independent components (ICs) were clustered across subjects to characterize sensorimotor networks in the time and frequency domains. ICs of the event related potentials (ERPs) were calculated for each cluster and condition. Next, a Generalized Partial Directed Coherence (gPDC) analysis was performed on each cluster to compare the functional connectivity between conditions and tasks. Main results . IC analysis of EEG during TSS resulted in three clusters identified at Brodmann areas (BA) 9, BA 6, and BA 4, which are areas associated with working memory, planning, and movement control. Lastly, we found significant ( p  < 0.05, adjusted for multiple comparisons) increases and decreases in functional connectivity of clusters during TSS, but not during FES when compared to the no stimulation conditions. Significance. The findings from this study provide evidence of how TSS recruits cortical networks during tonic and rhythmic lower limb movements. These results have implications for the development of spinal cord-based computer interfaces, and the design of neural stimulation devices for the treatment of pain and sensorimotor deficit. 
    more » « less
  5. A scalp-recording electroencephalography (EEG)-based brain-computer interface (BCI) system can greatly improve the quality of life for people who suffer from motor disabilities. Deep neural networks consisting of multiple convolutional, LSTM and fully-connected layers are created to decode EEG signals to maximize the human intention recognition accuracy. However, prior FPGA, ASIC, ReRAM and photonic accelerators cannot maintain sufficient battery lifetime when processing realtime intention recognition. In this paper, we propose an ultra-low-power photonic accelerator, MindReading, for human intention recognition by only low bit-width addition and shift operations. Compared to prior neural network accelerators, to maintain the real-time processing throughput, MindReading reduces the power consumption by 62.7% and improves the throughput per Watt by 168%. 
    more » « less