skip to main content

Title: Features of the Duckweed Lemna That Support Rapid Growth under Extremes of Light Intensity
This study addresses the unique functional features of duckweed via comparison of Lemna gibba grown under controlled conditions of 50 versus 1000 µmol photons m−2 s−1 and of a L. minor population in a local pond with a nearby population of the biennial weed Malva neglecta. Principal component analysis of foliar pigment composition revealed that Malva was similar to fast-growing annuals, while Lemna was similar to slow-growing evergreens. Overall, Lemna exhibited traits reminiscent of those of its close relatives in the family Araceae, with a remarkable ability to acclimate to both deep shade and full sunlight. Specific features contributing to duckweed’s shade tolerance included a foliar pigment composition indicative of large peripheral light-harvesting complexes. Conversely, features contributing to duckweed’s tolerance of high light included the ability to convert a large fraction of the xanthophyll cycle pool to zeaxanthin and dissipate a large fraction of absorbed light non-photochemically. Overall, duckweed exhibited a combination of traits of fast-growing annuals and slow-growing evergreens with foliar pigment features that represented an exaggerated version of that of terrestrial perennials combined with an unusually high growth rate. Duckweed’s ability to thrive under a wide range of light intensities can support success in a dynamic light environment with periodic cycles of rapid expansion.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cyanotoxins produced by harmful cyanobacteria blooms can damage freshwater ecosystems and threaten human health. Floating macrophytes may be used as a means of biocontrol by limiting light and resources available to cyanobacteria. However, genetic variation in macrophyte sensitivity to cyanotoxins could influence their suit- ability as biocontrol agents. We investigated the influence of such intraspecific variation on the response of two rapidly growing duckweed species, Lemna minor and Spirodela polyrhiza, often used in nutrient and metal bioremediation. We assessed two biomarkers related to productivity (biomass and chlorophyll A production) and two related to fitness measures (population size and growth rate). Fifteen genetic lineages of each species were grown in media containing common cyanotoxin microcystin-LR at ecologically relevant concentrations or control media for a period of twelve days. Genotype identity had a strong impact on all biomarker responses. Microcystin concentration slightly increased the final population sizes of both macrophyte species with a marginal effect on growth rate of L. minor and the chlorophyll A production of S. polyrhiza, but overall these species were very tolerant of microcystin. The strong tolerance supports the potential use of these plants as bioremediators of cyanobacterial blooms. However, differential impact of microcystin exposure discovered in single lineage models among genotypes indicates a potential for cyanotoxins to act as selective forces, necessitating attention to genotype selection for bioremediation. 
    more » « less
  2. This review focuses on recently characterized traits of the aquatic floating plant Lemna with an emphasis on its capacity to combine rapid growth with the accumulation of high levels of the essential human micronutrient zeaxanthin due to an unusual pigment composition not seen in other fast-growing plants. In addition, Lemna’s response to elevated CO2 was evaluated in the context of the source–sink balance between plant sugar production and consumption. These and other traits of Lemnaceae are compared with those of other floating aquatic plants as well as terrestrial plants adapted to different environments. It was concluded that the unique features of aquatic plants reflect adaptations to the freshwater environment, including rapid growth, high productivity, and exceptionally strong accumulation of high-quality vegetative storage protein and human antioxidant micronutrients. It was further concluded that the insensitivity of growth rate to environmental conditions and plant source–sink imbalance may allow duckweeds to take advantage of elevated atmospheric CO2 levels via particularly strong stimulation of biomass production and only minor declines in the growth of new tissue. It is proposed that declines in nutritional quality under elevated CO2 (due to regulatory adjustments in photosynthetic metabolism) may be mitigated by plant–microbe interaction, for which duckweeds have a high propensity. 
    more » « less
  3. Abstract

    The absence of pines from tropical forests is a puzzling biogeographical oddity potentially explained by traits of shade intolerance. Pinus krempfii (Lecomte), a flat-leaved pine endemic to the Central Highlands of Vietnam, provides a notable exception as it seems to compete successfully with shade-tolerant tropical species. Here, we test the hypothesis that successful conifer performance at the juvenile stage depends on physiological traits of shade tolerance by comparing the physiological characteristics of P. krempfii to coexisting species from two taxa: the genus Pinus, and a relatively abundant and shade-tolerant conifer family found in pantropical forests, the Podocarpaceae. We examined leaf photosynthetic, respiratory and biochemical traits. Additionally, we compiled attainable maximum photosynthesis, maximum RuBP carboxylation (Vcmax) and maximum electron transport (Jmax) values for Pinus and Podocarpaceae species from the literature. In our literature compilation, P. krempfii was intermediate between Pinus and Podocarpaceae in its maximum photosynthesis and its Vcmax. Pinus exhibited a higher Vcmax than Podocarpaceae, resulting in a less steep slope in the linear relationship between Jmax and Vcmax. These results suggest that Pinus may be more shade intolerant than Podocarpaceae, with P. krempfii falling between the two taxa. However, in contrast, Vietnamese conifers’ leaf mass per areas and biochemical traits did not highlight the same intermediate nature of P. krempfii. Furthermore, regardless of leaf morphology or family assignation, all species demonstrated a common and extremely high carbon gain efficiency. Overall, our findings highlight the importance of shade-tolerant photosynthetic traits for conifer survival in tropical forests. However, they also demonstrate a diversity of shade tolerance strategies, all of which lead to the persistence of Vietnamese juvenile conifers in low-light tropical understories.

    more » « less
  4. As the primary decomposers of organic material in terrestrial ecosystems, fungi are critical agents of the global carbon cycle. Yet our ability to link fungal community composition to ecosystem functioning is constrained by a limited understanding of the factors accounting for different wood decomposition rates among fungi. Here we examine which traits best explain fungal decomposition ability by combining detailed trait-based assays on 34 saprotrophic fungi from across North America in the laboratory with a 5-y field study comprising 1,582 fungi isolated from 74 decomposing logs. Fungal growth rate (hyphal extension rate) was the strongest single predictor of fungal-mediated wood decomposition rate under laboratory conditions, and accounted for up to 27% of the in situ variation in decomposition in the field. At the individual level, decomposition rate was negatively correlated with moisture niche width (an indicator of drought stress tolerance) and with the production of nutrient-mineralizing extracellular enzymes. Together, these results suggest that decomposition rates strongly align with a dominance-tolerance life-history trade-off that was previously identified in these isolates, forming a spectrum from slow-growing, stress-tolerant fungi that are poor decomposers to fast-growing, highly competitive fungi with fast decomposition rates. Our study illustrates how an understanding of fungal trait variation could improve our predictive ability of the early and midstages of wood decay, to which our findings are most applicable. By mapping our results onto the biogeographic distribution of the dominance-tolerance trade-off across North America, we approximate broad-scale patterns in intrinsic fungal-mediated wood decomposition rates.

    more » « less
  5. Abstract

    Phenotypic variability results from interactions between genotype and environment and is a major driver of ecological and evolutionary interactions. Measuring the relative contributions of genetic variation, the environment, and their interaction to phenotypic variation remains a fundamental goal of evolutionary ecology.

    In this study, we assess the question: How do genetic variation and local environmental conditions interact to influence phenotype within a single population? We explored this question using seed from a single population of common milkweed,Asclepias syriaca, in northern Michigan. We first measured resistance and resistance traits of 14 maternal lines in two common garden experiments (field and greenhouse) to detect genetic variation within the population. We carried out a reciprocal transplant experiment with three of these maternal lines to assess effects of local environment on phenotype. Finally, we compared the phenotypic traits measured in our experiments with the phenotypic traits of the naturally growing maternal genets to be able to compare relative effect of genetic and environmental variation on naturally occurring phenotypic variation. We measured defoliation levels, arthropod abundances, foliar cardenolide concentrations, foliar latex exudation, foliar carbon and nitrogen concentrations, and plant growth.

    We found a striking lack of correlation in trait expression of the maternal lines between the common gardens, or between the common gardens and the naturally growing maternal genets, suggesting that environment plays a larger role in phenotypic trait variation of this population. We found evidence of significant genotype‐by‐environment interactions for all traits except foliar concentrations of nitrogen and cardenolide. Milkweed resistance to chewing herbivores was associated more strongly with the growing environment. We observed no variation in foliar cardenolide concentrations among maternal lines but did observe variation among maternal lines in foliar latex exudation.

    Overall, our data reveal powerful genotype‐by‐environment interactions on the expression of most resistance traits in milkweed.

    more » « less