- Award ID(s):
- 1856724
- Publication Date:
- NSF-PAR ID:
- 10279745
- Journal Name:
- Frontiers in Behavioral Neuroscience
- Volume:
- 14
- ISSN:
- 1662-5153
- Sponsoring Org:
- National Science Foundation
More Like this
-
The cell adhesion molecule neuroligin2 (NLGN2) regulates GABAergic synapse development, but its role inneural circuit function in the adult hippocampus is unclear. We investigated GABAergic synapses and hippo-campus-dependent behaviors following viral-vector-mediated overexpression of NLGN2. Transducing hippo-campal neurons with AAV-NLGN2 increased neuronal expression of NLGN2 and membrane localization ofGABAergic postsynaptic proteins gephyrin and GABAARγ2, and presynaptic vesicular GABA transporter protein(VGAT) suggesting trans-synaptic enhancement of GABAergic synapses. In contrast, glutamatergic postsynapticdensity protein-95 (PSD-95) and presynaptic vesicular glutamate transporter (VGLUT) protein were unaltered.Moreover, AAV-NLGN2 significantly increased parvalbumin immunoreactive (PV+) synaptic boutons co-loca-lized with postsynaptic gephyrin+puncta. Furthermore, these changes were demonstrated to lead tomore »
-
Experiencing some early life adversity can have an “inoculating” effect that promotes resilience in adulthood. However, the mechanisms underlying stress inoculation are unknown, and animal models are lacking. Here we used the limited bedding and nesting (LBN) model of adversity to evaluate stress inoculation of addiction-related phenotypes. In LBN, pups from postnatal days 2 to 9 and their dams were exposed to a low-resource environment. In adulthood, they were tested for addiction-like phenotypes and compared to rats raised in standard housing conditions. High levels of impulsivity are associated with substance abuse, but in males, LBN reduced impulsive choice compared tomore »
-
N-methyl-d-aspartate receptors (NMDARs) are fundamental coincidence detectors of synaptic activity necessary for the induction of synaptic plasticity and synapse stability. Adjusting NMDAR synaptic content, whether by receptor insertion or lateral diffusion between extrasynaptic and synaptic compartments, could play a substantial role defining the characteristics of the NMDAR-mediated excitatory postsynaptic current (EPSC), which in turn would mediate the ability of the synapse to undergo plasticity. Lateral NMDAR movement has been observed in dissociated neurons; however, it is currently unclear whether NMDARs are capable of lateral surface diffusion in hippocampal slices, a more physiologically relevant environment. To test for lateral mobility inmore »
-
Abstract Synapses contain hundreds of distinct proteins whose heterogeneous expression levels are determinants of synaptic plasticity and signal transmission relevant to a range of diseases. Here, we use diffusible nucleic acid imaging probes to profile neuronal synapses using multiplexed confocal and super-resolution microscopy. Confocal imaging is performed using high-affinity locked nucleic acid imaging probes that stably yet reversibly bind to oligonucleotides conjugated to antibodies and peptides. Super-resolution PAINT imaging of the same targets is performed using low-affinity DNA imaging probes to resolve nanometer-scale synaptic protein organization across nine distinct protein targets. Our approach enables the quantitative analysis of thousands ofmore »
-
Abstract Long-term depression (LTD) of synaptic strength can take multiple forms and contribute to circuit remodeling, memory encoding or erasure. The generic term LTD encompasses various induction pathways, including activation of NMDA, mGlu or P2X receptors. However, the associated specific molecular mechanisms and effects on synaptic physiology are still unclear. We here compare how NMDAR- or P2XR-dependent LTD affect synaptic nanoscale organization and function in rodents. While both LTDs are associated with a loss and reorganization of synaptic AMPARs, only NMDAR-dependent LTD induction triggers a profound reorganization of PSD-95. This modification, which requires the autophagy machinery to remove the T19-phosphorylatedmore »