skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Aggression Results in the Phosphorylation of ERK1/2 in the Nucleus Accumbens and the Dephosphorylation of mTOR in the Medial Prefrontal Cortex in Female Syrian Hamsters
Like many social behaviors, aggression can be rewarding, leading to behavioral plasticity. One outcome of reward-induced aggression is the long-term increase in the speed in which future aggression-based encounters is initiated. This form of aggression impacts dendritic structure and excitatory synaptic neurotransmission in the nucleus accumbens, a brain region well known to regulate motivated behaviors. Yet, little is known about the intracellular signaling mechanisms that drive these structural/functional changes and long-term changes in aggressive behavior. This study set out to further elucidate the intracellular signaling mechanisms regulating the plasticity in neurophysiology and behavior that underlie the rewarding consequences of aggressive interactions. Female Syrian hamsters experienced zero, two or five aggressive interactions and the phosphorylation of proteins in reward-associated regions was analyzed. We report that aggressive interactions result in a transient increase in the phosphorylation of extracellular-signal related kinase 1/2 (ERK1/2) in the nucleus accumbens. We also report that aggressive interactions result in a transient decrease in the phosphorylation of mammalian target of rapamycin (mTOR) in the medial prefrontal cortex, a major input structure to the nucleus accumbens. Thus, this study identifies ERK1/2 and mTOR as potential signaling pathways for regulating the long-term rewarding consequences of aggressive interactions. Furthermore, the recruitment profile of the ERK1/2 and the mTOR pathways are distinct in different brain regions.  more » « less
Award ID(s):
1856724
PAR ID:
10472106
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
International Journal of Molecular Sciences
Volume:
24
Issue:
2
ISSN:
1422-0067
Page Range / eLocation ID:
1379
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Our social relationships determine our health and well-being. In rodent models, there is now strong support for the rewarding properties of aggressive or assertive behaviors to be critical for the expression and development of adaptive social relationships, buffering from stress and protecting from the development of psychiatric disorders such as depression. However, due to the false belief that aggression is not a part of the normal repertoire of social behaviors displayed by females, almost nothing is known about the neural mechanisms mediating the rewarding properties of aggression in half the population. In the following study, using Syrian hamsters as a well-validated and translational model of female aggression, we investigated the effects of aggressive experience on the expression of markers of postsynaptic structure (PSD-95, Caskin I) and excitatory synaptic transmission (GluA1, GluA2, GluA4, NR2A, NR2B, mGluR1a, and mGluR5) in the nucleus accumbens (NAc), caudate putamen and prefrontal cortex. Aggressive experience resulted in an increase in PSD-95, GluA1 and the dimer form of mGluR5 specifically in the NAc 24 h following aggressive experience. There was also an increase in the dimer form of mGluR1a 1 week following aggressive experience. Aggressive experience also resulted in an increase in the strength of the association between these postsynaptic proteins and glutamate receptors, supporting a common mechanism of action. In addition, 1 week following aggressive experience there was a positive correlation between the monomer of mGluR5 and multiple AMPAR and NMDAR subunits. In conclusion, we provide evidence that aggressive experience in females results in an increase in the expression of postsynaptic density, AMPARs and group I metabotropic glutamate receptors, and an increase in the strength of the association between postsynaptic proteins and glutamate receptors. This suggests that aggressive experience may result in an increase in excitatory synaptic transmission in the NAc, potentially encoding the rewarding and behavioral effects of aggressive interactions. 
    more » « less
  2. Abstract The formation of enduring relationships dramatically influences future behavior, promoting affiliation between familiar individuals. How such attachments are encoded to elicit and reinforce specific social behaviors in distinct ethological contexts remains unknown. Signaling via the oxytocin receptor (Oxtr) in the nucleus accumbens (NAc) facilitates social reward as well as pair bond formation between mates in socially monogamous prairie voles1–9. How Oxtr function influences activity in the NAc during pair bonding to promote affiliative behavior with partners and rejection of other potential mates has not been determined. Using longitudinalin vivofiber photometry in wild-type prairie voles and those lacking Oxtr, we demonstrate that Oxtr function sex-specifically regulates pair bonding behaviors and associated activity in the NAc. Oxtr function influences prosocial behavior in females in a state-dependent manner. Females lacking Oxtr demonstrate reduced prosocial behaviors and lower activity in the NAc during initial chemosensory investigation of novel males. Upon pair bonding, affiliative behavior with partners and neural activity in the NAc during these interactions increase, but these changes do not require Oxtr function. Conversely, males lacking Oxtr display increased prosocial investigation of novel females. Using the altered patterns of behavior and activity in the NAc of males lacking Oxtr during their first interactions with a female, we can predict their future preference for a partner or stranger days later. These results demonstrate that Oxtr function sex-specifically influences the early development of pair bonds by modulating prosociality and the neural processing of sensory cues and social interactions with novel individuals, unmasking underlying sex differences in the neural pathways regulating the formation of long-term relationships. 
    more » « less
  3. There is an ongoing debate on the contribution of the neuronal glutamate transporter EAAC1 to the onset of compulsive behaviors. Here, we used behavioral, electrophysiological, molecular, and viral approaches in male and female mice to identify the molecular and cellular mechanisms by which EAAC1 controls the execution of repeated motor behaviors. Our findings show that, in the striatum, a brain region implicated with movement execution, EAAC1 limits group I metabotropic glutamate receptor (mGluRI) activation, facilitates D1 dopamine receptor (D1R) expression, and ensures long-term synaptic plasticity. Blocking mGluRI in slices from mice lacking EAAC1 restores D1R expression and synaptic plasticity. Conversely, activation of intracellular signaling pathways coupled to mGluRI in D1R-containing striatal neurons of mice expressing EAAC1 leads to reduced D1R protein level and increased stereotyped movement execution. These findings identify new molecular mechanisms by which EAAC1 can shape glutamatergic and dopaminergic signals and control repeated movement execution. 
    more » « less
  4. Synaptic plasticity relies on rapid, yet spatially precise signaling to alter synaptic strength. Arc is a brain enriched protein that is rapidly expressed during learning-related behaviors and is essential for regulating metabotropic glutamate receptor-mediated long-term depression (mGluR-LTD). We previously showed that disrupting the ubiquitination capacity of Arc enhances mGluR-LTD; however, the consequences of Arc ubiquitination on other mGluR-mediated signaling events is poorly characterized. Here we find that pharmacological activation of Group I mGluRs with S-3,5-dihydroxyphenylglycine (DHPG) increases Ca2+release from the endoplasmic reticulum (ER). Disrupting Arc ubiquitination on key amino acid residues enhances DHPG-induced ER-mediated Ca2+release. These alterations were observed in all neuronal subregions except secondary branchpoints. Deficits in Arc ubiquitination altered Arc self-assembly and enhanced its interaction with calcium/calmodulin-dependent protein kinase IIb (CaMKIIb) and constitutively active forms of CaMKII in HEK293 cells. Colocalization of Arc and CaMKII was altered in cultured hippocampal neurons, with the notable exception of secondary branchpoints. Finally, disruptions in Arc ubiquitination were found to increase Arc interaction with the integral ER protein Calnexin. These results suggest a previously unknown role for Arc ubiquitination in the fine tuning of ER-mediated Ca2+signaling that may support mGluR-LTD, which in turn, may regulate CaMKII and its interactions with Arc. 
    more » « less
  5. Background/Objectives: Transient Receptor Potential Melastatin 8 (TRPM8) is a non-selective, Ca2+-permeable cation channel involved in thermoregulation and other physiological processes, such as basal tear secretion, cell differentiation, and insulin homeostasis. The activation and deactivation of TRPM8 occur through genetic modifications, channel interactions, and signaling cascades. Recent evidence suggests a significant role of TRPM8 in the hypothalamus and amygdala related to pain sensation and sexual behavior. Notably, TRPM8 has been implicated in neuropathic pain, migraines, and neurodegenerative diseases such as Parkinson’s disease. Our laboratory has identified testosterone as a high-affinity ligand of TRPM8. TRPM8 deficiency appears to influence behavioral traits in mice, like increased aggression and deficits in sexual satiety. Here, we aim to explore the pathways altered in brain tissues of TRPM8-deficient mice using the expression and methylation profiles of messenger RNA (mRNA) and long non-coding RNA (lncRNA). Specifically, we focused on brain regions integral to behavioral and hormonal control, including the olfactory bulb, hypothalamus, amygdala, and insula. Methods: RNA was isolated and purified for microarray analysis collected from male wild-type and TRPM8 knockout mice. Results: We identified various differentially expressed genes tied to multiple signaling pathways. Among them, the androgen–estrogen receptor (AR-ER) pathway, steroidogenesis pathway, sexual reward pathway, and cocaine reward pathway are particularly worth noting. Conclusions: These results should bridge the existing gaps in the knowledge regarding TRPM8 and inform potential targets for future studies to elucidate its role in the behavior changes and pathology of the diseases associated with TRPM8 activity. 
    more » « less