skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Actin filament alignment causes mechanical hysteresis in cross-linked networks
Cells dynamically control their material properties through remodeling of the actin cytoskeleton, an assembly of cross-linked networks and bundles formed from the biopolymer actin. We recently found that cross-linked networks of actin filaments reconstituted in vitro can exhibit adaptive behavior and thus serve as a model system to understand the underlying mechanisms of mechanical adaptation of the cytoskeleton. In these networks, training, in the form of applied shear stress, can induce asymmetry in the nonlinear elasticity. Here, we explore control over this mechanical hysteresis by tuning the concentration and mechanical properties of cross-linking proteins in both experimental and simulated networks. We find that this effect depends on two conditions: the initial network must exhibit nonlinear strain stiffening, and filaments in the network must be able to reorient during training. Hysteresis depends strongly and non-monotonically on cross-linker concentration, with a peak at moderate concentrations. In contrast, at low concentrations, where the network does not strain stiffen, or at high concentrations, where filaments are less able to rearrange, there is little response to training. Additionally, we investigate the effect of changing cross-linker properties and find that longer or more flexible cross-linkers enhance hysteresis. Remarkably plotting hysteresis against alignment after training yields a single curve regardless of the physical properties or concentration of the cross-linkers.  more » « less
Award ID(s):
1905675 2011854
PAR ID:
10279889
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
17
Issue:
22
ISSN:
1744-683X
Page Range / eLocation ID:
5499 to 5507
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Merks, Roeland M.H. (Ed.)
    Cross-linked actin networks are the primary component of the cell cytoskeleton and have been the subject of numerous experimental and modeling studies. While these studies have demonstrated that the networks are viscoelastic materials, evolving from elastic solids on short timescales to viscous fluids on long ones, questions remain about the duration of each asymptotic regime, the role of the surrounding fluid, and the behavior of the networks on intermediate timescales. Here we perform detailed simulations of passively cross-linked non-Brownian actin networks to quantify the principal timescales involved in the elastoviscous behavior, study the role of nonlocal hydrodynamic interactions, and parameterize continuum models from discrete stochastic simulations. To do this, we extend our recent computational framework for semiflexible filament suspensions, which is based on nonlocal slender body theory, to actin networks with dynamic cross linkers and finite filament lifetime. We introduce a model where the cross linkers are elastic springs with sticky ends stochastically binding to and unbinding from the elastic filaments, which randomly turn over at a characteristic rate. We show that, depending on the parameters, the network evolves to a steady state morphology that is either an isotropic actin mesh or a mesh with embedded actin bundles. For different degrees of bundling, we numerically apply small-amplitude oscillatory shear deformation to extract three timescales from networks of hundreds of filaments and cross linkers. We analyze the dependence of these timescales, which range from the order of hundredths of a second to the actin turnover time of several seconds, on the dynamic nature of the links, solvent viscosity, and filament bending stiffness. We show that the network is mostly elastic on the short time scale, with the elasticity coming mainly from the cross links, and viscous on the long time scale, with the effective viscosity originating primarily from stretching and breaking of the cross links. We show that the influence of nonlocal hydrodynamic interactions depends on the network morphology: for homogeneous meshworks, nonlocal hydrodynamics gives only a small correction to the viscous behavior, but for bundled networks it both hinders the formation of bundles and significantly lowers the resistance to shear once bundles are formed. We use our results to construct three-timescale generalized Maxwell models of the networks. 
    more » « less
  2. Abstract The cytoskeleton is an active composite of filamentous proteins that dictates diverse mechanical properties and processes in eukaryotic cells by generating forces and autonomously restructuring itself. Enzymatic motors that act on the comprising filaments play key roles in this activity, driving spatiotemporally heterogeneous mechanical responses that are critical to cellular multifunctionality, but also render mechanical characterization challenging. Here, we couple optical tweezers microrheology and fluorescence microscopy with simulations and mathematical modeling to robustly characterize the mechanics of active composites of actin filaments and microtubules restructured by kinesin motors. It is discovered that composites exhibit a rich ensemble of force response behaviors–elastic, yielding, and stiffening–with their propensity and properties tuned by motor concentration and strain rate. Moreover, intermediate kinesin concentrations elicit emergent mechanical stiffness and resistance while higher and lower concentrations exhibit softer, more viscous dissipation. It is further shown that composites transition from well‐mixed interpenetrating double‐networks of actin and microtubules to de‐mixed states of microtubule‐rich aggregates surrounded by relatively undisturbed actin phases. It is this de‐mixing that leads to the emergent mechanical response, offering an alternate route that composites can leverage to achieve enhanced stiffness through coupling of structure and mechanics. 
    more » « less
  3. Thermoset networks are chemically cross-linked materials that exhibit high heat resistance and mechanical strength; however, the permanently cross-linked system makes end-of-life degradation difficult. Thermosets that are inherently degradable and made from renewably derived starting materials are an underexplored area in sustainable polymer chemistry. Here, we report the synthesis of novel sugar- and terpene-based monomers as the enes in thiol–ene network formation. The resulting networks showed varied mechanical properties depending on the thiol used during cross-linking, ranging from strain-at-breaks of 12 to 200%. Networks with carveol or an isosorbide-based thiol incorporated showed plastic deformation under tensile stress testing, while geraniol-containing networks demonstrated linear stress–strain behavior. The storage modulus at the rubbery plateau was highly dependent on the thiol cross-linker, showing an order of magnitude difference between commercial PETMP, DTT, and synthesized Iso2MC. Thermal degradation temperatures were low for the networks, primarily below 200 °C, and the Tg values ranged from −17 to 31 °C. Networks were rapidly degraded under basic conditions, showing complete degradation after 2 days for nearly all synthesized thermosets. This library demonstrates the range of thermal and mechanical properties that can be targeted using monomers from sugars and terpenes and expands the field of renewably derived and degradable thermoset network materials. 
    more » « less
  4. Cells rely on their cytoskeleton for key processes including division and directed motility. Actin filaments are a primary constituent of the cytoskeleton. Although actin filaments can create a variety of network architectures linked to distinct cell functions, the microscale molecular interactions that give rise to these macroscale structures are not well understood. In this work, we investigate the microscale mechanisms that produce different branched actin network structures using an iterative classification approach. First, we employ a simple yet comprehensive agent-based model that produces synthetic actin networks with precise control over the microscale dynamics. Then we apply machine learning techniques to classify actin networks based on measurable network density and geometry, identifying key mechanistic processes that lead to particular branched actin network architectures. Extensive computational experiments reveal that the most accurate method uses a combination of supervised learning based on network density and unsupervised learning based on network symmetry. This framework can potentially serve as a powerful tool to discover the molecular interactions that produce the wide variety of actin network configurations associated with normal development as well as pathological conditions such as cancer. 
    more » « less
  5. In most eukaryotic cells, actin filaments assemble into a shell-like actin cortex under the plasma membrane, controlling cellular morphology, mechanics, and signaling. The actin cortex is highly polymorphic, adopting diverse forms such as the ring-like structures found in podosomes, axonal rings, and immune synapses. The biophysical principles that underlie the formation of actin rings and cortices remain unknown. Using a molecular simulation platform called MEDYAN, we discovered that varying the filament treadmilling rate and myosin concentration induces a finite size phase transition in actomyosin network structures. We found that actomyosin networks condense into clusters at low treadmilling rates or high myosin concentrations but form ring-like or cortex-like structures at high treadmilling rates and low myosin concentrations. This mechanism is supported by our corroborating experiments on live T cells, which exhibit ring-like actin networks upon activation by stimulatory antibody. Upon disruption of filament treadmilling or enhancement of myosin activity, the pre-existing actin rings are disrupted into actin clusters or collapse towards the network center respectively. Our analyses suggest that the ring-like actin structure is a preferred state of low mechanical energy, which is, importantly, only reachable at sufficiently high treadmilling rates. 
    more » « less