skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2011854

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Intrinsic structural and oxidic defects activate graphitic carbon electrodes towards electrochemical reactions underpinning energy conversion and storage technologies. Yet, these defects can also disrupt the long‐range and periodic arrangement of carbon atoms, thus, the characterization of graphitic carbon electrodes necessitatesin‐situatomistic differentiation of graphitic regions from mesoscopic bulk disorder. Here, we leverage the combined techniques ofin‐situattenuated total reflectance infrared spectroscopy and first‐principles calculations to reveal that graphitic carbon electrodes exhibit electric‐field dependent infrared activity that is sensitive to the bulk mesoscopic intrinsic disorder. With this platform, we identify graphitic regions from amorphous domains by discovering that they demonstrate opposing electric‐field‐dependent infrared activity under electrochemical conditions. Our work provides a roadmap for identifying mesoscopic disorder in bulk carbon materials under potential bias. 
    more » « less
  2. Abstract Dynamic liquid crystalline polymers (dLCPs) incorporate both liquid crystalline mesogens and dynamic bonds into a single polymeric material. These dual functionalities impart order‐dependent thermo‐responsive mechano‐optical properties and enhanced reprocessability/programmability enabling their use as soft actuators, adaptive adhesives, and damping materials. While many previous works studying dynamic LCPs utilize dynamic covalent bonds, metallosupramolecular bonds provide a modular platform where a series of materials can be accessed from a single polymeric feedstock through the variation of the metal ion used. A series of dLCPs were prepared by the addition of metal salts to a telechelic 2,6‐bisbenzimidazolylpyridine (Bip) ligand endcapped LCP to form metallosupramolecular liquid crystal polymers (MSLCPs). The resulting MSLCPs were found to phase separate into hard and soft phases which aids in their mechanical robustness. Variations of the metal salts used to access these materials allowed for control of the thermomechanical, viscoelastic, and adhesive properties with relaxations that can be tailored independently of the mesogenic transition. This work demonstrates that by accessing phase separation through the incorporation of metallosupramolecular moieties, highly processable yet robust MSLCP materials can be realized. This class of materials opens the door to LCPs with bulk flow behavior that can also be utilized as multi‐level adhesives. 
    more » « less
  3. Abstract Large-scale quantum computers will inevitably need quantum error correction to protect information against decoherence. Traditional error correction typically requires many qubits, along with high-efficiency error syndrome measurement and real-time feedback. Autonomous quantum error correction instead uses steady-state bath engineering to perform the correction in a hardware-efficient manner. In this work, we develop a new autonomous quantum error correction scheme that actively corrects single-photon loss and passively suppresses low-frequency dephasing, and we demonstrate an important experimental step towards its full implementation with transmons. Compared to uncorrected encoding, improvements are experimentally witnessed for the logical zero, one, and superposition states. Our results show the potential of implementing hardware-efficient autonomous quantum error correction to enhance the reliability of a transmon-based quantum information processor. 
    more » « less
  4. Abstract Organic semiconductors based on liquid crystal (LC) molecules have attracted increasing interest. In this work, two linear LCs based on 2,5‐bis(thien‐2‐yl)thieno[3,2‐b]thiophene (BTTT) mesogen are designed and synthesized, including BTTT/dEO3 with two symmetrically attached tri(ethylene oxide) groups and BTTT/mEO6 with one asymmetrically attached hexa(ethylene oxide) group. These two molecules have comparable functional‐group compositions but different molecular geometries, leading to their moderately different material performances. Both LCs show smectic mesophases with relatively low transition temperatures as confirmed by differential scanning calorimetry and polarized optical microscopy. A combination of experimental grazing incidence wide‐angle X‐ray scattering and molecular dynamics (MD) simulations reveals a herringbone packing motif of BTTT segments in both LCs while a smaller molecular tilt angle in BTTT/mEO6. Ionic conductivities are measured by doping LCs with different amounts of ionic dopants, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). BTTT/mEO6 shows better smectic phase stability to higher LiTFSI doping ratios. Both LCs exhibit similar ionic conductivities in the smectic phases, but BTTT/mEO6 outperforms BTTT/dEO3 by a factor of three in the amorphous phase at higher temperatures. MD simulations, performed to examine the ion solvation environment, reveal that BTTT/mEO6 is more efficient in coordinating Li‐ions and screening their interactions with TFSI‐ions which further promote ionic transport. 
    more » « less
  5. Abstract We propose a quantum science platform utilizing the dipole-dipole coupling between donor-acceptor pairs (DAPs) in wide bandgap semiconductors to realize optically controllable, long-range interactions between defects in the solid state. We carry out calculations based on density functional theory (DFT) to investigate the electronic structure and interactions of DAPs formed by various substitutional point-defects in diamond and silicon carbide (SiC). We determine the most stable charge states and evaluate zero phonon lines using constrained DFT and compare our results with those of simple donor-acceptor pair (DAP) models. We show that polarization differences between ground and excited states lead to unusually large electric dipole moments for several DAPs in diamond and SiC. We predict photoluminescence spectra for selected substitutional atoms and show that while B-N pairs in diamond are challenging to control due to their large electron-phonon coupling, DAPs in SiC, especially Al-N pairs, are suitable candidates to realize long-range optically controllable interactions. 
    more » « less
  6. Abstract Abnormal cancer metabolism causes hypoxic and immunosuppressive tumor microenvironment (TME), which limits the antitumor efficacy of photodynamic therapy (PDT). Herein, we report a photosensitizing nanoscale metal–organic layer (MOL) with anchored 3‐bromopyruvate (BrP), BrP@MOL, as a metabolic reprogramming agent to enhance PDT and antitumor immunity. BrP@MOL inhibited mitochondrial respiration and glycolysis to oxygenate tumors and reduce lactate production. This metabolic reprogramming enhanced reactive oxygen species generation during PDT and reshaped the immunosuppressive TME to enhance antitumor immunity. BrP@MOL‐mediated PDT inhibited tumor growth by >90 % with 40 % of mice being tumor‐free, rejected tumor re‐challenge, and prevented lung metastasis. Further combination with immune checkpoint blockade potently regressed the tumors with >98 % tumor inhibition and 80 % of mice being tumor‐free. 
    more » « less
  7. Abstract One-dimensional (1D) olivine iron phosphate (FePO4) is widely proposed for electrochemical lithium (Li) extraction from dilute water sources, however, significant variations in Li selectivity were observed for particles with different physical attributes. Understanding how particle features influence Li and sodium (Na) co-intercalation is crucial for system design and enhancing Li selectivity. Here, we investigate a series of FePO4particles with various features and revealed the importance of harnessing kinetic and chemo-mechanical barrier difference between lithiation and sodiation to promote selectivity. The thermodynamic preference of FePO4provides baseline of selectivity while the particle features are critical to induce different kinetic pathways and barriers, resulting in different Li to Na selectivity from 6.2 × 102to 2.3 × 104. Importantly, we categorize the FePO4particles into two groups based on their distinctly paired phase evolutions upon lithiation and sodiation, and generate quantitative correlation maps among Li preference, morphological features, and electrochemical properties. By selecting FePO4particles with specific features, we demonstrate fast (636 mA/g) Li extraction from a high Li source (1: 100 Li to Na) with (96.6 ± 0.2)% purity, and high selectivity (2.3 × 104) from a low Li source (1: 1000 Li to Na) with (95.8 ± 0.3)% purity in a single step. 
    more » « less
  8. Abstract Auxetic materials have a negative Poisson’s ratio and are of significant interest in applications that include impact mitigation, membrane separations and biomedical engineering. While there are numerous examples of structured materials that exhibit auxetic behavior, the examples of engineered auxetic structures is largely limited to periodic lattice structures that are limited to directional or anisotropic auxetic response. Structures that exhibit a three-dimensionally isotropic auxetic response have been, unfortunately, slow to evolve. Here we introduce an inverse design algorithm based on global node optimization to design three-dimensional auxetic metamaterial structures from disordered networks. After specifying the target Poisson’s ratio for a structure, an inverse design algorithm is used to adjust the positions of all nodes in a disordered network structure until the desired mechanical response is achieved. The proposed algorithm allows independent control of shear and bulk moduli, while preserving the density and connectivity of the networks. When the angle bending stiffness in the network is kept low, it is possible to realize optimized structures with a Poisson’s ratios as low as −0.6. During the optimization, the bulk modulus of these networks decreases by almost two orders of magnitude, but the shear modulus remains largely unaltered. The materials designed in this manner are fabricated by dual-material 3D-printing, and are found to exhibit the mechanical responses that were originally encoded in the computational design engine. The approach proposed here provides a materials-by-design platform that could be extended for engineering of optical, acoustic, and electrical properties, beyond the design of auxetic metamaterials. 
    more » « less
  9. Abstract Silicon carbide (SiC)'s nonlinear optical properties and applications to quantum information have recently brought attention to its potential as an integrated photonics platform. However, despite its many excellent material properties, such as large thermal conductivity, wide transparency window, and strong optical nonlinearities, it is generally a difficult material for microfabrication. Here, it is shown that directly bonded silicon‐on‐silicon carbide can be a high‐performing hybrid photonics platform that does not require the need to form SiC membranes or directly pattern in SiC. The optimized bonding method yields defect‐free, uniform films with minimal oxide at the silicon–silicon–carbide interface. Ring resonators are patterned into the silicon layer with standard, complimentary metal–oxide–semiconductor (CMOS) compatible (Si) fabrication and measure room‐temperature, near‐infrared quality factors exceeding 105. The corresponding propagation loss is 5.7 dB cm−1. The process offers a wafer‐scalable pathway to the integration of SiC photonics into CMOS devices. 
    more » « less
  10. Abstract Graphite is a commonly used raw material across many industries and the demand for high‐quality graphite has been increasing in recent years, especially as a primary component for lithium‐ion batteries. However, graphite production is currently limited by production shortages, uneven geographical distribution, and significant environmental impacts incurred from conventional processing. Here, an efficient method of synthesizing biomass‐derived graphite from biochar is presented as a sustainable alternative to natural and synthetic graphite. The resulting bio‐graphite equals or exceeds quantitative quality metrics of spheroidized natural graphite, achieving a RamanID/IGratio of 0.051 and crystallite size parallel to the graphene layers (La) of 2.08 µm. This bio‐graphite is directly applied as a raw input to liquid‐phase exfoliation of graphene for the scalable production of conductive inks. The spin‐coated films from the bio‐graphene ink exhibit the highest conductivity among all biomass‐derived graphene or carbon materials, reaching 3.58 ± 0.16 × 104S m−1. Life cycle assessment demonstrates that this bio‐graphite requires less fossil fuel and produces reduced greenhouse gas emissions compared to incumbent methods for natural, synthesized, and other bio‐derived graphitic materials. This work thus offers a sustainable, locally adaptable solution for producing state‐of‐the‐art graphite that is suitable for bio‐graphene and other high‐value products. 
    more » « less