skip to main content


Title: Nebular spectra of 111 Type Ia supernovae disfavour single-degenerate progenitors
ABSTRACT We place statistical constraints on Type Ia supernova (SN Ia) progenitors using 227 nebular-phase spectra of 111 SNe Ia. We find no evidence of stripped companion emission in any of the nebular-phase spectra. Upper limits are placed on the amount of mass that could go undetected in each spectrum using recent hydrodynamic simulations. With these null detections, we place an observational 3σ upper limit on the fraction of SNe Ia that are produced through the classical H-rich non-degenerate companion scenario of $\lt 5.5 {{\ \rm per\ cent}}$. Additionally, we set a tentative 3σ upper limit otan He star progenitor scenarios of $\lt 6.4 {{\ \rm per\ cent}}$, although further theoretical modelling is required. These limits refer to our most representative sample including normal, 91bg-like, 91T-like, and ‘super-Chandrasekhar’ SNe Ia but excluding SNe Iax and SNe Ia-CSM. As part of our analysis, we also derive a Nebular Phase Phillips Relation, which approximates the brightness of an SN Ia from 150 to 500 d after maximum using the peak magnitude and decline rate parameter Δm15(B).  more » « less
Award ID(s):
1814440
NSF-PAR ID:
10279992
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
493
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
1044 to 1062
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We present optical and near-infrared (NIR) observations of the Type Icn supernova (SN Icn) 2022ann, the fifth member of its newly identified class of SNe. Its early optical spectra are dominated by narrow carbon and oxygen P-Cygni features with absorption velocities of ∼800 km s−1; slower than other SNe Icn and indicative of interaction with a dense, H/He-poor circumstellar medium (CSM) that is outflowing slower than typical Wolf–Rayet wind velocities of >1000 km s−1. We identify helium in NIR spectra 2 weeks after maximum and in optical spectra at 3 weeks, demonstrating that the CSM is not fully devoid of helium. Unlike other SNe Icn, the spectra of SN 2022ann never develop broad features from SN ejecta, including in the nebular phase. Compared to other SNe Icn, SN 2022ann has a low luminosity (o-band absolute magnitude of ∼−17.7), and evolves slowly. The bolometric light curve is well-modelled by 4.8 M⊙ of SN ejecta interacting with 1.3 M⊙ of CSM. We place an upper limit of 0.04 M⊙ of 56Ni synthesized in the explosion. The host galaxy is a dwarf galaxy with a stellar mass of 107.34 M⊙ (implied metallicity of log(Z/Z⊙) ≈ 0.10) and integrated star-formation rate of log (SFR) = −2.20 M⊙ yr−1; both lower than 97 per cent of galaxies observed to produce core-collapse supernovae, although consistent with star-forming galaxies on the galaxy Main Sequence. The low CSM velocity, nickel and ejecta masses, and likely low-metallicity environment disfavour a single Wolf–Rayet progenitor star. Instead, a binary companion is likely required to adequately strip the progenitor and produce a low-velocity outflow.

     
    more » « less
  2. ABSTRACT

    The observed diversity in Type Ia supernovae (SNe Ia) – the thermonuclear explosions of carbon–oxygen white dwarf stars used as cosmological standard candles – is currently met with a variety of explosion models and progenitor scenarios. To help improve our understanding of whether and how often different models contribute to the occurrence of SNe Ia and their assorted properties, we present a comprehensive analysis of seven nearby SNe Ia. We obtained one to two epochs of optical spectra with Gemini Observatory during the nebular phase (>200 d past peak) for each of these events, all of which had time series of photometry and spectroscopy at early times (the first ∼8 weeks after explosion). We use the combination of early- and late-time observations to assess the predictions of various models for the explosion (e.g. double-detonation, off-centre detonation, stellar collisions), progenitor star (e.g. ejecta mass, metallicity), and binary companion (e.g. another white dwarf or a non-degenerate star). Overall, we find general consistency in our observations with spherically symmetric models for SN Ia explosions, and with scenarios in which the binary companion is another degenerate star. We also present an in-depth analysis of SN 2017fzw, a member of the subgroup of SNe Ia which appear to be transitional between the subluminous ‘91bg-like’ events and normal SNe Ia, and for which nebular-phase spectra are rare.

     
    more » « less
  3. ABSTRACT

    In the new era of time-domain surveys, Type Ia supernovae are being caught sooner after explosion, which has exposed significant variation in their early light curves. Two driving factors for early-time evolution are the distribution of 56Ni in the ejecta and the presence of flux excesses of various causes. We perform an analysis of the largest young SN Ia sample to date. We compare 115 SN Ia light curves from the Zwicky Transient Facility to the turtls model grid containing light curves of Chandrasekhar mass explosions with a range of 56Ni masses, 56Ni distributions, and explosion energies. We find that the majority of our observed light curves are well reproduced by Chandrasekhar mass explosion models with a preference for highly extended 56Ni distributions. We identify six SNe Ia with an early-time flux excess in our gr-band data (four ‘blue’ and two ‘red’ flux excesses). We find an intrinsic rate of 18 ± 11 per cent of early flux excesses in SNe Ia at z < 0.07, based on three detected flux excesses out of 30 (10 per cent) observed SNe Ia with a simulated efficiency of 57 per cent. This is comparable to rates of flux excesses in the literature but also accounts for detection efficiencies. Two of these events are mostly consistent with circumstellar material interaction, while the other four have longer lifetimes in agreement with companion interaction and 56Ni-clump models. We find a higher frequency of flux excesses in 91T/99aa-like events (44 ± 13 per cent).

     
    more » « less
  4. ABSTRACT After correcting for their light-curve shape and colour, Type Ia supernovae (SNe Ia) are precise cosmological distance indicators. However, there remains a non-zero intrinsic scatter in the differences between measured distance and that inferred from a cosmological model (i.e. Hubble residuals or HRs), indicating that SN Ia distances can potentially be further improved. We use the open-source relational data base kaepora to generate composite spectra with desired average properties of phase, light-curve shape, and HR. At many phases, the composite spectra from two subsamples with positive and negative average HRs are significantly different. In particular, in all spectra from 9 d before to 15 d after peak brightness, we find that SNe with negative HRs have, on average, higher ejecta velocities (as seen in nearly every optical spectral feature) than SNe with positive HRs. At +4 d relative to B-band maximum, using a sample of 62 SNe Ia, we measure a 0.091 ± 0.035 mag (2.7σ) HR step between SNe with Si ii λ6355 line velocities ($v_{Si\, rm{\small II}}$) higher/lower than −11 000 km s−1 (the median velocity). After light-curve shape and colour correction, SNe with higher velocities tend to have underestimated distance moduli relative to a cosmological model. The intrinsic scatter in our sample reduces from 0.094 to 0.082 mag after making this correction. Using the Si ii λ6355 velocity evolution of 115 SNe Ia, we estimate that a velocity difference >500 km s−1 exists at each epoch between the positive-HR and negative-HR samples with 99.4 per cent confidence. Finally at epochs later than +37 d, we observe that negative-HR composite spectra tend to have weaker spectral features in comparison to positive-HR composite spectra. 
    more » « less
  5. We present an early-phase g-band light curve and visual-wavelength spectra of the normal Type Ia supernova (SN) 2013gy. The light curve is constructed by determining the appropriate S-corrections to transform KAIT natural-system B- and V-band photometry and Carnegie Supernova Project natural-system g-band photometry to the Pan-STARRS1 g-band natural photometric system. A Markov Chain Monte Carlo calculation provides a best-fit single power-law function to the first ten epochs of photometry described by an exponent of 2:16+0:06 􀀀0:06 and a time of first light of MJD 56629.4+0:1 􀀀0:1, which is 1:93+0:12 􀀀0:13 days (i.e., < 48 hr) before the discovery date (2013 December 4.84 UT) and 􀀀19:10+0:12 􀀀0:13 days before the time of B-band maximum (MJD 56648.50:1). The estimate of the time of first light is consistent with the explosion time inferred from the evolution of the Si ii 6355 Doppler velocity. Furthermore, discovery photometry and previous nondetection limits enable us to constrain the companion radius down to Rc  4 R . In addition to our early-time constraints, we use a deep +235 day nebular-phase spectrum from Magellan/IMACS to place a stripped H-mass limit of < 0:018 M . Combined, these limits e ectively rule out H-rich nondegenerate companions. 
    more » « less