skip to main content

Title: Clustering single-cell RNA-seq data by rank constrained similarity learning
Abstract Motivation Recent breakthroughs of single-cell RNA sequencing (scRNA-seq) technologies offer an exciting opportunity to identify heterogeneous cell types in complex tissues. However, the unavoidable biological noise and technical artifacts in scRNA-seq data as well as the high dimensionality of expression vectors make the problem highly challenging. Consequently, although numerous tools have been developed, their accuracy remains to be improved. Results Here, we introduce a novel clustering algorithm and tool RCSL (Rank Constrained Similarity Learning) to accurately identify various cell types using scRNA-seq data from a complex tissue. RCSL considers both local similarity and global similarity among the cells to discern the subtle differences among cells of the same type as well as larger differences among cells of different types. RCSL uses Spearman’s rank correlations of a cell’s expression vector with those of other cells to measure its global similarity, and adaptively learns neighbor representation of a cell as its local similarity. The overall similarity of a cell to other cells is a linear combination of its global similarity and local similarity. RCSL automatically estimates the number of cell types defined in the similarity matrix, and identifies them by constructing a block-diagonal matrix, such that its distance to the similarity more » matrix is minimized. Each block-diagonal submatrix is a cell cluster/type, corresponding to a connected component in the cognate similarity graph. When tested on 16 benchmark scRNA-seq datasets in which the cell types are well-annotated, RCSL substantially outperformed six state-of-the-art methods in accuracy and robustness as measured by three metrics. Availability and implementation The RCSL algorithm is implemented in R and can be freely downloaded at https://cran.r-project.org/web/packages/RCSL/index.html. Supplementary information Supplementary data are available at Bioinformatics online. « less
Authors:
; ;
Editors:
Mathelier, Anthony
Award ID(s):
1661332
Publication Date:
NSF-PAR ID:
10280092
Journal Name:
Bioinformatics
ISSN:
1367-4803
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT: Motivation Single-cell RNA sequencing (scRNA-seq) captures whole transcriptome information of individual cells. While scRNA-seq measures thousands of genes, researchers are often interested in only dozens to hundreds of genes for a closer study. Then, a question is how to select those informative genes from scRNA-seq data. Moreover, single-cell targeted gene profiling technologies are gaining popularity for their low costs, high sensitivity and extra (e.g. spatial) information; however, they typically can only measure up to a few hundred genes. Then another challenging question is how to select genes for targeted gene profiling based on existing scRNA-seq data. Results Here, we develop the single-cell Projective Non-negative Matrix Factorization (scPNMF) method to select informative genes from scRNA-seq data in an unsupervised way. Compared with existing gene selection methods, scPNMF has two advantages. First, its selected informative genes can better distinguish cell types. Second, it enables the alignment of new targeted gene profiling data with reference data in a low-dimensional space to facilitate the prediction of cell types in the new data. Technically, scPNMF modifies the PNMF algorithm for gene selection by changing the initialization and adding a basis selection step, which selects informative bases to distinguish cell types. We demonstrate that scPNMFmore »outperforms the state-of-the-art gene selection methods on diverse scRNA-seq datasets. Moreover, we show that scPNMF can guide the design of targeted gene profiling experiments and the cell-type annotation on targeted gene profiling data. Availability and implementation The R package is open-access and available at https://github.com/JSB-UCLA/scPNMF. The data used in this work are available at Zenodo: https://doi.org/10.5281/zenodo.4797997. Supplementary information Supplementary data are available at Bioinformatics online.« less
  2. Abstract Summary With the advancements of high-throughput single-cell RNA-sequencing protocols, there has been a rapid increase in the tools available to perform an array of analyses on the gene expression data that results from such studies. For example, there exist methods for pseudo-time series analysis, differential cell usage, cell-type detection RNA-velocity in single cells, etc. Most analysis pipelines validate their results using known marker genes (which are not widely available for all types of analysis) and by using simulated data from gene-count-level simulators. Typically, the impact of using different read-alignment or unique molecular identifier (UMI) deduplication methods has not been widely explored. Assessments based on simulation tend to start at the level of assuming a simulated count matrix, ignoring the effect that different approaches for resolving UMI counts from the raw read data may produce. Here, we present minnow, a comprehensive sequence-level droplet-based single-cell RNA-sequencing (dscRNA-seq) experiment simulation framework. Minnow accounts for important sequence-level characteristics of experimental scRNA-seq datasets and models effects such as polymerase chain reaction amplification, cellular barcodes (CB) and UMI selection and sequence fragmentation and sequencing. It also closely matches the gene-level ambiguity characteristics that are observed in real scRNA-seq experiments. Using minnow, we explore the performancemore »of some common processing pipelines to produce gene-by-cell count matrices from droplet-bases scRNA-seq data, demonstrate the effect that realistic levels of gene-level sequence ambiguity can have on accurate quantification and show a typical use-case of minnow in assessing the output generated by different quantification pipelines on the simulated experiment. Supplementary information Supplementary data are available at Bioinformatics online.« less
  3. null (Ed.)
    Single cell RNA-sequencing (scRNA-seq) technology enables comprehensive transcriptomic profiling of thousands of cells with distinct phenotypic and physiological states in a complex tissue. Substantial efforts have been made to characterize single cells of distinct identities from scRNA-seq data, including various cell clustering techniques. While existing approaches can handle single cells in terms of different cell (sub)types at a high resolution, identification of the functional variability within the same cell type remains unsolved. In addition, there is a lack of robust method to handle the inter-subject variation that often brings severe confounding effects for the functional clustering of single cells. In this study, we developed a novel data denoising and cell clustering approach, namely CIBS, to provide biologically explainable functional classification for scRNA-seq data. CIBS is based on a systems biology model of transcriptional regulation that assumes a multi-modality distribution of the cells’ activation status, and it utilizes a Boolean matrix factorization approach on the discretized expression status to robustly derive functional modules. CIBS is empowered by a novel fast Boolean Matrix Factorization method, namely PFAST, to increase the computational feasibility on large scale scRNA-seq data. Application of CIBS on two scRNA-seq datasets collected from cancer tumor micro-environment successfully identified subgroupsmore »of cancer cells with distinct expression patterns of epithelial-mesenchymal transition and extracellular matrix marker genes, which was not revealed by the existing cell clustering analysis tools. The identified cell groups were significantly associated with the clinically confirmed lymph-node invasion and metastasis events across different patients. Index Terms—Cell clustering analysis, Data denoising, Boolean matrix factorization, Cancer microenvirionment, Metastasis.« less
  4. null (Ed.)
    Large, comprehensive collections of single-cell RNA sequencing (scRNA-seq) datasets have been generated that allow for the full transcriptional characterization of cell types across a wide variety of biological and clinical conditions. As new methods arise to measure distinct cellular modalities, a key analytical challenge is to integrate these datasets or transfer knowledge from one to the other to better understand cellular identity and functions. Here, we present a simple yet surprisingly effective method named common factor integration and transfer learning (cFIT) for capturing various batch effects across experiments, technologies, subjects, and even species. The proposed method models the shared information between various datasets by a common factor space while allowing for unique distortions and shifts in genewise expression in each batch. The model parameters are learned under an iterative nonnegative matrix factorization (NMF) framework and then used for synchronized integration from across-domain assays. In addition, the model enables transferring via low-rank matrix from more informative data to allow for precise identification in data of lower quality. Compared with existing approaches, our method imposes weaker assumptions on the cell composition of each individual dataset; however, it is shown to be more reliable in preserving biological variations. We apply cFIT to multiplemore »scRNA-seq datasets of developing brain from human and mouse, varying by technologies and developmental stages. The successful integration and transfer uncover the transcriptional resemblance across systems. The study helps establish a comprehensive landscape of brain cell-type diversity and provides insights into brain development.« less
  5. Abstract Background

    Single-cell RNA-sequencing (scRNA-seq) technologies allow for the study of gene expression in individual cells. Often, it is of interest to understand how transcriptional activity is associated with cell-specific covariates, such as cell type, genotype, or measures of cell health. Traditional approaches for this type of association mapping assume independence between the outcome variables (or genes), and perform a separate regression for each. However, these methods are computationally costly and ignore the substantial correlation structure of gene expression. Furthermore, count-based scRNA-seq data pose challenges for traditional models based on Gaussian assumptions.

    Results

    We aim to resolve these issues by developing a reduced-rank regression model that identifies low-dimensional linear associations between a large number of cell-specific covariates and high-dimensional gene expression readouts. Our probabilistic model uses a Poisson likelihood in order to account for the unique structure of scRNA-seq counts. We demonstrate the performance of our model using simulations, and we apply our model to a scRNA-seq dataset, a spatial gene expression dataset, and a bulk RNA-seq dataset to show its behavior in three distinct analyses.

    Conclusion

    We show that our statistical modeling approach, which is based on reduced-rank regression, captures associations between gene expression and cell- and sample-specific covariates by leveraging low-dimensionalmore »representations of transcriptional states.

    « less