skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Composite grid designs for adaptive computer experiments with fast inference
Summary Experiments are often used to produce emulators of deterministic computer code. This article introduces composite grid experimental designs and a sequential method for building the designs for accurate emulation. Computational methods are developed that enable fast and exact Gaussian process inference even with large sample sizes. We demonstrate that the proposed approach can produce emulators that are orders of magnitude more accurate than current approximations at a comparable computational cost.  more » « less
Award ID(s):
1953111
PAR ID:
10280207
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Biometrika
ISSN:
0006-3444
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A statistical emulator can be used as a surrogate of complex physics-based calculations to drastically reduce the computational cost. Its successful implementation hinges on an accurate representation of the nonlinear response surface with a high-dimensional input space. Conventional “space-filling” designs, including random sampling and Latin hypercube sampling, become inefficient as the dimensionality of the input variables increases, and the predictive accuracy of the emulator can degrade substantially for a test input distant from the training input set. To address this fundamental challenge, we develop a reliable emulator for predicting complex functionals by active learning with error control (ALEC). The algorithm is applicable to infinite-dimensional mapping with high-fidelity predictions and a controlled predictive error. The computational efficiency has been demonstrated by emulating the classical density functional theory (cDFT) calculations, a statistical-mechanical method widely used in modeling the equilibrium properties of complex molecular systems. We show that ALEC is much more accurate than conventional emulators based on the Gaussian processes with “space-filling” designs and alternative active learning methods. In addition, it is computationally more efficient than direct cDFT calculations. ALEC can be a reliable building block for emulating expensive functionals owing to its minimal computational cost, controllable predictive error, and fully automatic features. 
    more » « less
  2. Measurements of volcano deformation are increasingly routine, but constraining complex magma reservoir geometries via inversions of surface deformation measurements remains challenging. This is partly due to deformation modeling being limited to one of two approaches: computationally efficient semi-analytical elastic solutions for simple magma reservoir geometries (point sources, spheroids, and cracks) and computationally expensive numerical solutions for complex 3D geometries. Here, we introduce a pair of Graph Neural Network (GNN) based elasto-static emulators capable of making fast and reasonably accurate predictions (error upper bound: 15 %) of surface deformation associated with 3D reservoir geometries: a spheroid emulator and a general shape emulator, the latter parameterized with spherical harmonics. The emulators are trained on, and benchmarked against, boundary element (BEM) simulations, providing up to three orders of magnitude speed up compared to BEM methods. Once trained, the emulators can generalize to new reservoir geometries statistically similar to those in the training data set, thus avoiding the need for re-training, a common limitation for existing neural network emulators. We demonstrate the utility of the emulators via Bayesian Markov Chain Monte Carlo inversions of synthetic surface deformation data, showcasing scenarios in which the emulators can, and can not, resolve complex magma reservoir geometries from surface deformation. Our work demonstrates that GNN based emulators have the potential to significantly reduce the computational cost of inverse analyses related to volcano deformation, thereby bringing new insights into the complex geometries of magmatic systems. 
    more » « less
  3. Abstract Climate emulators are a powerful instrument for climate modeling, especially in terms of reducing the computational load for simulating spatiotemporal processes associated with climate systems. The most important type of emulators are statistical emulators trained on the output of an ensemble of simulations from various climate models. However, such emulators oftentimes fail to capture the “physics” of a system that can be detrimental for unveiling critical processes that lead to climate tipping points. Historically, statistical mechanics emerged as a tool to resolve the constraints on physics using statistics. We discuss how climate emulators rooted in statistical mechanics and machine learning can give rise to new climate models that are more reliable and require less observational and computational resources. Our goal is to stimulate discussion on how statistical climate emulators can further be improved with the help of statistical mechanics which, in turn, may reignite the interest of statistical community in statistical mechanics of complex systems. 
    more » « less
  4. Abstract Gravitational-wave observations of binary neutron-star (BNS) mergers have the potential to revolutionize our understanding of the nuclear equation of state (EOS) and the fundamental interactions that determine its properties. However, Bayesian parameter estimation frameworks do not typically sample over microscopic nuclear-physics parameters that determine the EOS. One of the major hurdles in doing so is the computational cost involved in solving the neutron-star structure equations, known as the Tolman–Oppenheimer–Volkoff (TOV) equations. In this paper, we explore approaches to emulating solutions for the TOV equations: multilayer perceptrons (MLPs), Gaussian processes, and a data-driven variant of the reduced basis method (RBM). We implement these emulators for three different parameterizations of the nuclear EOS, each with a different degree of complexity represented by the number of model parameters. We find that our MLP-based emulators are generally more accurate than the other two algorithms, whereas the RBM results in the largest speedup with respect to the full high-fidelity TOV solver. We employ these emulators for a simple parameter inference using a potentially loud BNS observation and show that the posteriors predicted by our emulators are in excellent agreement with those obtained from the full TOV solver. 
    more » « less
  5. The BUQEYE collaboration (Bayesian Uncertainty Quantification: Errors in Your effective field theory) presents a pedagogical introduction to projection-based, reduced-order emulators for applications in low-energy nuclear physics. The term emulator refers here to a fast surrogate model capable of reliably approximating high-fidelity models. As the general tools employed by these emulators are not yet well-known in the nuclear physics community, we discuss variational and Galerkin projection methods, emphasize the benefits of offline-online decompositions, and explore how these concepts lead to emulators for bound and scattering systems that enable fast and accurate calculations using many different model parameter sets. We also point to future extensions and applications of these emulators for nuclear physics, guided by the mature field of model (order) reduction. All examples discussed here and more are available as interactive, open-source Python code so that practitioners can readily adapt projection-based emulators for their own work. 
    more » « less