skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Interpretation of Particle Size, Shape, and Carbon Flux of Marine Particle Images Is Strongly Affected by the Choice of Particle Detection Algorithm
Award ID(s):
1840868
PAR ID:
10280241
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
7
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The mystery associated with a proposed Dark Sector of phenomena that are separate from the standard model of particle physics is described. A Dark Sector may possess matter particles, force carriers which mediate their interactions, and new interactions and symmetries that are beyond the standard model of particle physics. Various approaches for Dark Sector searches are described, including those at the energy frontier at the Large Hadron Collider, in astrophysical interactions with both terrestrial experiments and those in space-born platforms. Searches using low energy photons from microwave energies in cryogenic environments to x-ray energies are also described. While there is no noncontroversial evidence for Dark Sector phenomena presently, new searches with more modern equipment and analysis methods are exploring regions of phase space that have not been available before now, indicating ongoing interest and excitement in this research. 
    more » « less
  2. Silica nanoparticles find utility in different roles within the commercial domain. They are either employed in bulk within pharmaceutical formulations or at interfaces in anti-coalescing agents. Thus, studying the particle attributes contributing to the characteristics of silica particle-laden interfaces is of interest. The present work highlights the impact of particle size (i.e., 250 nm vs. 1000 nm) on the rheological properties of interfacial networks formed by hydrophobically modified silica nanoparticles at the air–water interface. The particle surface properties were examined using mobility measurements, Langmuir trough studies, and interfacial rheology techniques. Optical microscopy imaging along with Langmuir trough studies revealed the microstructure associated with various surface pressures and corresponding surface coverages (ϕ). The 1000 nm silica particle networks gave rise to a higher surface pressure at the same coverage compared to 250 nm particles on account of the stronger attractive capillary interactions. Interfacial rheological characterization revealed that networks with 1000 nm particles possess higher surface modulus and yield stress in comparison to the network obtained with 250 nm particles at the same surface pressure. These findings highlight the effect of particle size on the rheological characteristics of particle-laden interfaces, which is of importance in determining the stability and flow response of formulations comprising particle-stabilized emulsions and foams. 
    more » « less
  3. Electrokinetic microassembly is used to position microparts via dielectrophoresis and electro-osmosis. Present work studies experimental conditions for creating latex particle agglomerates such as “pearly chains”. The work discusses one of the approaches to lock particles in the position after the electric field is removed. Particle-to-particle interactions such as electro-rotation and formation of particle chains parallel and perpendicular to the field lines are explored. 
    more » « less