skip to main content


Title: Visiting Scientists Provide Capacity Development: Lessons Learned by POGO and SCOR
To enable the sustainable use of their ocean resources, capacity for ocean science and observations is important for every coastal nation. In many developing areas of the world, capability for ocean science and observations is not yet adequate to meet management needs. International organizations have employed a variety of capacity development approaches to assist developing countries in building self-sustaining ocean science and observational communities. This article describes the lessons learned from visiting scientist programs conducted for more than a decade by the Partnership for Observation of the Global Ocean (POGO) and the Scientific Committee on Oceanic Research (SCOR) that dispatched ocean scientists to developing countries to train hundreds of individuals in a variety of ocean science and observation topics and techniques. From these programs, SCOR and POGO have learned that training in-country has multiple benefits to trainees, host institutions, and trainers, benefits that are not achievable when students leave their countries. These benefits include more cost-effective training on issues relevant to the host institutions using locally available technology, as well as the ability to reach a large number of trainees. Lessons learned from the POGO and SCOR programs can be used to inform the future capacity-development activities of POGO and SCOR, as well as other organizations, to improve, enhance, and expand the use of in-country training and mentoring. Such approaches could contribute to the capacity development efforts of the UN Decade of Ocean Science for Sustainable Development.  more » « less
Award ID(s):
1840868 1724881
NSF-PAR ID:
10280255
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Oceanography
Volume:
34
Issue:
3
ISSN:
1042-8275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Sustainability of the scientific enterprise requires being able to recruit, retain, and prepare ongoing generations of PhD-trained scientists ready to adapt with the evolving needs of the scientific workforce and society. This necessitates a broadened, trainee-centered view in doctoral and postdoctoral training—including a prominent focus on career planning, science across sectors, and development of professional skills. Although there is energy and movement to enhance graduate and postdoctoral training, actions remain disparate, leading to inefficiencies in implementation and lack of systemic change. In 2019, an emerging national initiative, Professional Development Hub (pd|hub), hosted a workshop to bring organizations and individuals together across stakeholder groups to discuss enhancing the development, dissemination, and widespread implementation of evidence-based practices for STEM graduate and postdoctoral education, with specific emphasis on career and professional development for PhD scientists. The fifty workshop participants represented nine key stakeholder groups: career development practitioners, scientific societies, disseminators, education researchers and evaluators, employers of PhD scientists, funders, professional associations, trainees, and university leaders and faculty. In addition, participants spanned different races, ethnicities, genders, disciplines, sectors, geographic locations, career stages, and levels of institutional resources. This report presents cross-cutting themes identified at the workshop, examples of stakeholder-specific perspectives, and recommended next steps. As part of the collective effort to develop a foundation for sustainable solutions, several actions were defined, including: incentivizing change at institutions and programs, curating and disseminating resources for evidence-based career and professional development educational practices, expanding evidence for effective training and mentoring, establishing expectations for STEM career and professional development, and improving communication across all stakeholders in STEM PhD education. Furthermore, the report describes national-level actions already moving forward via pd|hub in the months following the workshop. Building on a decade of reports and gatherings advocating for a shift in graduate and postdoctoral education, this workshop represented a key step and catalyst for change toward a more impactful future. 
    more » « less
  2. Blasiak, Robert (Ed.)
    Abstract Marine Life 2030 is a programme endorsed by the United Nations Decade of Ocean Science for Sustainable Development (the Ocean Decade) to establish a globally coordinated system that delivers knowledge of ocean life to those who need it, promoting human well-being, sustainable development, and ocean conservation. It is an open network to unite existing and new programmes into a co-designed, global framework to share information on methods, standards, observations, and applications. Goals include realizing interoperable information and transforming the observation and forecasting of marine life for the benefit of all people. Co-design, sharing local capacity, and coordination between users of ocean resources across regions is fundamental to enable sustainable use and conservation. A novel, bottom-up networking structure is now engaging members of the ocean community to address local issues, with Marine Life 2030 facilitating the linkage between groups across different regions to meet the challenges of the Ocean Decade. A variety of metrics, including those proposed by the Group on Earth Observations, will be used to track the success of the co-design process. 
    more » « less
  3. null (Ed.)
    In 2016, 10 universities launched a Networked Improvement Community (NIC) aimed at increasing the number of scholars from Alliances for Graduate Education and the Professoriate (AGEP) populations entering science, technology, engineering, and mathematics (STEM) faculty careers. NICs bring together stakeholders focused on a common goal to accelerate innovation through structured, ongoing intervention development, implementation, and refinement. We theorized a NIC organizational structure would aid understandings of a complex problem in different contexts and accelerate opportunities to develop and improve interventions to address the problem. A distinctive feature of this NIC is its diverse institutional composition of public and private, predominantly white institutions, a historically Black university, a Hispanic-serving institution, and land grant institutions located across eight states and Washington, DC, United States. NIC members hold different positions within their institutions and have access to varied levers of change. Among the many lessons learned through this community case study, analyzing and addressing failed strategies is as equally important to a healthy NIC as is sharing learning from successful interventions. We initially relied on pre-existing relationships and assumptions about how we would work together, rather than making explicit how the NIC would develop, establish norms, understand common processes, and manage changing relationships. We had varied understandings of the depth of campus differences, sometimes resulting in frustrations about the disparate progress on goals. NIC structures require significant engagement with the group, often more intensive than traditional multi-institution organizational structures. They require time to develop and ongoing maintenance in order to advance the work. We continue to reevaluate our model for leadership, climate, diversity, conflict resolution, engagement, decision-making, roles, and data, leading to increased investment in the success of all NIC institutions. Our NIC has evolved from the traditional NIC model to become the Center for the Integration of Research, Teaching and Learning (CIRTL) AGEP NIC model with five key characteristics: (1) A well-specified aim, (2) An understanding of systems, including a variety of contexts and different organizations, (3) A culture and practice of shared leadership and inclusivity, (4) The use of data reflecting different institutional contexts, and (5) The ability to accelerate infrastructure and interventions. We conclude with recommendations for those considering developing a NIC to promote diversity, equity, and inclusion efforts. 
    more » « less
  4. The communities of Puerto Rico are highly vulnerable to climate change as the archipelago has experienced a multitude of compounding crises and extreme weather events in recent years. To address these issues, the research, analysis, and design of grand challenge solutions for disaster-prone regions like Puerto Rico can utilize collaborative transdisciplinary efforts. Local non-governmental and community-based organizations have a pivotal role in the reconstruction processes and the building of community and environmental resilience in underserved communities. This paper contributes an empirical case study of an online transdisciplinary collaboration between a group of academics and a Puerto Rican non-governmental organization, Caras con Causa. From participant observation, it includes a document analysis of meeting notes with cohort members who were involved in a collaborative National Science Foundation Project, The INFEWS-ER: A Virtual Resource Center Enabling Graduate Innovations at the Nexus of Food, Energy, and Water Systems, with Caras con Causa between October 2020 and April 2021. Caras con Causa focuses on uplifting Puerto Ricans by creating and administering environmental, educational, economic, and community programs, highlighting disaster relief and resilience to help Puerto Rican food, energy, and water systems. Eight key discussion themes emerged from the document analysis: team organization, collaboration with Caras con Causa, deliverables, team contributions, context understanding, participation outcomes, technology setup, and lessons learned. We analyze each of the emerging themes to explain how academics may use transdisciplinary skill sets in addition to standard disciplinary-based approaches or techniques to enhance the institutional capacity of a non-governmental organization doing community resilience work to benefit local food, energy, and water systems. While the learned lessons in this non-governmental organization-academic collaboration may be context-specific, we provide insights that may be generalizable to collaborations in comparable transdisciplinary settings.

     
    more » « less
  5. null (Ed.)
    The proposed Biology Integration Institute will bring together two major research institutions in the Upper Midwest—the University of Minnesota (UMN) and University of Wisconsin-Madison (UW)—to investigate the causes and consequences of plant biodiversity across scales in a rapidly changing world —from genes and molecules within cells and tissues to communities, ecosystems, landscapes and the biosphere. The Institute focuses on plant biodiversity, defined broadly to encompass the heterogeneity within life that occurs from the smallest to the largest biological scales. A premise of the Institute is that life is envisioned as occurring at different scales nested within several contrasting conceptions of biological hierarchies, defined by the separate but related fields of physiology, evolutionary biology and ecology. The Institute will emphasize the use of ‘spectral biology’—detection of biological properties based on the interaction of light energy with matter—and process-oriented predictive models to investigate the processes by which biological components at one scale give rise to emergent properties at higher scales. Through an iterative process that harnesses cutting edge technologies to observe a suite of carefully designed empirical systems—including the National Ecological Observatory Network (NEON) and some of the world’s longest running and state-of-the-art global change experiments—the Institute will advance biological understanding and theory of the causes and consequences of changes in biodiversity and at the interface of plant physiology, ecology and evolution. INTELLECTUAL MERIT The Institute brings together a diverse, gender-balanced and highly productive team with significant leadership experience that spans biological disciplines and career stages and is poised to integrate biology in new ways. Together, the team will harness the potential of spectral biology, experiments, observations and synthetic modeling in a manner never before possible to transform understanding of how variation within and among biological scales drives plant and ecosystem responses to global change over diurnal, seasonal and millennial time scales. In doing so, it will use and advance state-of-the-art theory. The institute team posits that the designed projects will unearth transformative understanding and biological rules at each of the various scales that will enable an unprecedented capacity to discern the linkages between physiological, ecological and evolutionary processes in relation to the multi-dimensional nature of biodiversity in this time of massive planetary change. A strength of the proposed Institute is that it leverages prior federal investments in research and formalizes partnerships with foreign institutions heavily invested in related biodiversity research. Most of the planned projects leverage existing research initiatives, infrastructure, working groups, experiments, training programs, and public outreach infrastructure, all of which are already highly synergistic and collaborative, and will bring together members of the overall research and training team. BROADER IMPACTS A central goal of the proposed Institute is to train the next generation of diverse integrative biologists. Post-doctoral, graduate student and undergraduate trainees, recruited from non-traditional and underrepresented groups, including through formal engagement with Native American communities, will receive a range of mentoring and training opportunities. Annual summer training workshops will be offered at UMN and UW as well as training experiences with the Global Change and Biodiversity Research Priority Program (URPP-GCB) at the University of Zurich (UZH) and through the Canadian Airborne Biodiversity Observatory (CABO). The Institute will engage diverse K-12 audiences, the general public and Native American communities through Market Science modules, Minute Earth videos, a museum exhibit and public engagement and educational activities through the Bell Museum of Natural History, the Cedar Creek Ecosystem Science Reserve (CCESR) and the Wisconsin Tribal Conservation Association. 
    more » « less