skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-cadence, early-time observations of core-collapse supernovae from the TESS prime mission
ABSTRACT We present observations from the Transiting Exoplanet Survey Satellite (TESS) of twenty bright core-collapse supernovae with peak TESS-band magnitudes ≲18 mag. We reduce this data with an implementation of the image subtraction pipeline used by the All-Sky Automated Survey for Supernovae (ASAS-SN) optimized for use with the TESS images. In empirical fits to the rising light curves, we do not find strong correlations between the fit parameters and the peak luminosity. Existing semi-analytic models fit the light curves of the Type II supernovae well, but do not yield reasonable estimates of the progenitor radius or explosion energy, likely because they are derived for use with ultraviolet observations while TESS observes in the near-infrared. If we instead fit the data with numerically simulated light curves, the rising light curves of the Type II supernovae are consistent with the explosions of red supergiants. While we do not identify shock breakout emission for any individual event, when we combine the fit residuals of the Type II supernovae in our sample, we do find a >5σ flux excess in the ∼1 d before the start of the light-curve rise. It is likely that this excess is due to shock breakout emission, and that during its extended mission TESS will observe a Type II supernova bright enough for this signal to be detected directly.  more » « less
Award ID(s):
1814440 1908952
PAR ID:
10280274
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
500
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
5639 to 5656
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present photometric and spectroscopic data of SN 2018lab, a low-luminosity Type IIP supernova (LLSN) with aV-band peak luminosity of −15.1 ± 0.1 mag. SN 2018lab was discovered by the Distance Less Than 40 Mpc (DLT40) SN survey only 0.73 days post-explosion, as determined by observations from the Transiting Exoplanet Survey Satellite (TESS). TESS observations of SN 2018lab yield a densely sampled, fast-rising, early-time light curve likely powered by ejecta–circumstellar medium (CSM) interaction. The blueshifted, broadened flash feature in the earliest spectra (<2 days) of SN 2018lab provides further evidence for ejecta–CSM interaction. The early emission features in the spectra of SN 2018lab are well described by models of a red supergiant progenitor with an extended envelope and a close-in CSM. As one of the few LLSNe with observed flash features, SN 2018lab highlights the need for more early spectra to explain the diversity of the flash feature morphology of Type II SNe. 
    more » « less
  2. Abstract We present a sample of 34 normal Type II supernovae (SNe II) detected with the Zwicky Transient Facility, with multiband UV light curves starting att≤ 4 days after explosion, and X-ray observations. We characterize the early UV-optical color, provide empirical host-extinction corrections, and show that thet> 2 day UV-optical colors and the blackbody evolution of the sample are consistent with shock cooling (SC) regardless of the presence of “flash ionization” features. We present a framework for fitting SC models that can reproduce the parameters of a set of multigroup simulations up to 20% in radius and velocity. Observations of 15 SNe II are well fit by models with breakout radii <1014cm. Eighteen SNe are typically more luminous, with observations att≥ 1 day that are better fit by a model with a large >1014cm breakout radius. However, these fits predict an early rise during the first day that is too slow. We suggest that these large-breakout events are explosions of stars with an inflated envelope or with confined circumstellar material (CSM). Using the X-ray data, we derive constraints on the extended (∼1015cm) CSM density independent of spectral modeling and find that most SN II progenitors lose M ̇ < 10 4 M yr 1 up to a few years before explosion. We show that the overall observed breakout radius distribution is skewed to higher radii due to a luminosity bias. We argue that the 66 22 + 11 % of red supergiants (RSGs) explode as SNe II with breakout radii consistent with the observed distribution of RSGs, with a tail extending to large radii, likely due to the presence of CSM. 
    more » « less
  3. Abstract Early-time light curves/spectra of some hydrogen-rich supernovae (SNe) provide solid evidence of the existence of confined, dense circumstellar matter (CSM) surrounding dying massive stars. We numerically and analytically study the radiative acceleration of CSM in such systems, where the radiation is mainly powered by the interaction between the SN ejecta and the CSM. We find that the acceleration of the unshocked dense CSM ahead of the shock is larger for massive and compact CSM, with velocities reaching up to ∼103km s−1for a CSM of order 0.1Mconfined within ∼1015cm. We show that the dependence of the acceleration on the CSM density helps us explain the diversity of the CSM velocity inferred from the early spectra of some Type II SNe. For explosions in even denser CSM, radiative acceleration can affect the dissipation of strong collisionless shocks formed after the shock breakout, which would affect early nonthermal emission expected from particle acceleration. 
    more » « less
  4. null (Ed.)
    Context. Supernovae (SNe) Type Ibn are rapidly evolving and bright ( M R, peak  ∼ −19) transients interacting with He-rich circumstellar material (CSM). SN 2018bcc, detected by the ZTF shortly after explosion, provides the best constraints on the shape of the rising light curve (LC) of a fast Type Ibn. Aims. We used the high-quality data set of SN 2018bcc to study observational signatures of the class. Additionally, the powering mechanism of SN 2018bcc offers insights into the debated progenitor connection of Type Ibn SNe. Methods. We compared well-constrained LC properties obtained from empirical models with the literature. We fit the pseudo-bolometric LC with semi-analytical models powered by radioactive decay and CSM interaction. Finally, we modeled the line profiles and emissivity of the prominent He  I lines, in order to study the formation of P-Cygni profiles and to estimate CSM properties. Results. SN 2018bcc had a rise time to peak of the LC of 5.6 −0.1 +0.2 days in the restframe with a rising shape power-law index close to 2, and seems to be a typical rapidly evolving Type Ibn SN. The spectrum lacked signatures of SN-like ejecta and was dominated by over 15 He emission features at 20 days past peak, alongside Ca and Mg, all with V FWHM ∼ 2000 km s −1 . The luminous and rapidly evolving LC could be powered by CSM interaction but not by the decay of radioactive 56 Ni. Modeling of the He  I lines indicated a dense and optically thick CSM that can explain the P-Cygni profiles. Conclusions. Like other rapidly evolving Type Ibn SNe, SN 2018bcc is a luminous transient with a rapid rise to peak powered by shock interaction inside a dense and He-rich CSM. Its spectra do not support the existence of two Type Ibn spectral classes. We also note the remarkable observational match to pulsational pair instability SN models. 
    more » « less
  5. Abstract The interaction of supernova ejecta with a surrounding circumstellar medium (CSM) generates a strong shock, which can convert ejecta kinetic energy into observable radiation. Given the diversity of potential CSM structures (arising from diverse mass-loss processes such as late-stage stellar outbursts, binary interaction, and winds), the resulting transients can display a wide range of light-curve morphologies. We provide a framework for classifying the transients arising from interaction with a spherical CSM shell. The light curves are decomposed into five consecutive phases, starting from the onset of interaction and extending through shock breakout and subsequent shock cooling. The relative prominence of each phase in the light curve is determined by two dimensionless quantities representing the CSM-to-ejecta mass ratioη, and the breakout parameterξ. These two parameters define four light-curve morphology classes, where each class is characterized by the location of the shock breakout and the degree of deceleration as the shock sweeps up the CSM. We compile analytic scaling relations connecting the luminosity and duration of each light-curve phase to the physical parameters. We then run a grid of radiation hydrodynamics simulations for a wide range of ejecta and CSM parameters to numerically explore the landscape of interaction light curves, and to calibrate and confirm the analytic scalings. We connect our theoretical framework to several case studies of observed transients, highlighting the relevance in explaining slow-rising and superluminous supernovae, fast blue optical transients, and double-peaked light curves. 
    more » « less