skip to main content


Title: Optical spectroscopy of blazars for the Cherenkov Telescope Array
Context. Blazars are the most numerous class of high-energy (HE; E ∼ 50 MeV−100 GeV) and very high-energy (VHE; E ∼ 100 GeV−10 TeV) gamma-ray emitters. Currently, a measured spectroscopic redshift is available for only about 50% of gamma-ray BL Lacertae objects (BL Lacs), mainly due to the difficulty in measuring reliable redshifts from their nearly featureless continuum-dominated optical spectra. The knowledge of the redshift is fundamental for understanding the emission from blazars, for population studies and also for indirect studies of the extragalactic background light and searches for Lorentz invariance violation and axion-like particles using blazars. Aims. This paper is the first in a series of papers that aim to measure the redshift of a sample of blazars likely to be detected with the upcoming Cherenkov Telescope Array (CTA), a ground-based gamma-ray observatory. Methods. Monte Carlo simulations were performed to select those hard spectrum gamma-ray blazars detected with the Fermi -LAT telescope still lacking redshift measurements, but likely to be detected by CTA in 30 hours of observing time or less. Optical observing campaigns involving deep imaging and spectroscopic observations were organised to efficiently constrain their redshifts. We performed deep medium- to high-resolution spectroscopy of 19 blazar optical counterparts with the Keck II, SALT, and ESO NTT telescopes. We searched systematically for spectral features and, when possible, we estimated the contribution of the host galaxy to the total flux. Results. We measured eleven firm spectroscopic redshifts with values ranging from 0.1116 to 0.482, one tentative redshift, three redshift lower limits including one at z ≥ 0.449 and another at z ≥ 0.868. Four BL Lacs show featureless spectra.  more » « less
Award ID(s):
2011420 1707432
NSF-PAR ID:
10280358
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
650
ISSN:
0004-6361
Page Range / eLocation ID:
A106
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Active galactic nuclei (AGNs) make up about 35 per cent of the more than 250 sources detected in very high-energy (VHE) gamma rays to date with the imaging atmospheric Cherenkov telescopes. Apart from four nearby radio galaxies and two AGNs of unknown type, all known VHE AGNs are blazars. Knowledge of the cosmological redshift of gamma-ray blazars is key to enabling the study of their intrinsic emission properties, as the interaction between gamma rays and the extragalactic background light (EBL) results in a spectral softening. Therefore, the redshift determination exercise is crucial to indirectly placing tight constraints on the EBL density, and to studying blazar population evolution across cosmic time. Due to the powerful relativistic jets in blazars, most of their host galaxies’ spectral features are outshined, and dedicated high signal-to-noise (S/N) spectroscopic observations are required. Deep medium- to high-resolution spectroscopy of 33 gamma-ray blazar optical counterparts was performed with the European Southern Observatory, New Technology Telescope, Keck II telescope, Shane 3-metre telescope, and the Southern African Large Telescope. From the sample, spectra from 25 objects display spectral features or are featureless and have high S/N. The other eight objects have low-quality featureless spectra. We systematically searched for absorption and emission features and estimated, when possible, the fractional host galaxy flux in the measured total flux. Our measurements yielded 14 firm spectroscopic redshifts, ranging from 0.0838 to 0.8125, one tentative redshift, and two lower limits: one at $z > 0.382$ and the other at z > 0.629.

     
    more » « less
  2. Context. In November 2019, eROSITA on board of the Spektrum-Roentgen-Gamma (SRG) observatory started to map the entire sky in X-rays. After the four-year survey program, it will reach a flux limit that is about 25 times deeper than ROSAT. During the SRG performance verification phase, eROSITA observed a contiguous 140 deg 2 area of the sky down to the final depth of the eROSITA all-sky survey (eROSITA Final Equatorial-Depth Survey; eFEDS), with the goal of obtaining a census of the X-ray emitting populations (stars, compact objects, galaxies, clusters of galaxies, and active galactic nuclei) that will be discovered over the entire sky. Aims. This paper presents the identification of the counterparts to the point sources detected in eFEDS in the main and hard samples and their multi-wavelength properties, including redshift. Methods. To identifyy the counterparts, we combined the results from two independent methods ( NWAY and ASTROMATCH ), trained on the multi-wavelength properties of a sample of 23k XMM-Newton sources detected in the DESI Legacy Imaging Survey DR8. Then spectroscopic redshifts and photometry from ancillary surveys were collated to compute photometric redshifts. Results. Of the eFEDS sources, 24 774 of 27 369 have reliable counterparts (90.5%) in the main sample and 231 of 246 sourcess (93.9%) have counterparts in the hard sample, including 2514 (3) sources for which a second counterpart is equally likely. By means of reliable spectra, Gaia parallaxes, and/or multi-wavelength properties, we have classified the reliable counterparts in both samples into Galactic (2695) and extragalactic sources (22 079). For about 340 of the extragalactic sources, we cannot rule out the possibility that they are unresolved clusters or belong to clusters. Inspection of the distributions of the X-ray sources in various optical/IR colour-magnitude spaces reveal a rich variety of diverse classes of objects. The photometric redshifts are most reliable within the KiDS/VIKING area, where deep near-infrared data are also available. Conclusions. This paper accompanies the eROSITA early data release of all the observations performed during the performance and verification phase. Together with the catalogues of primary and secondary counterparts to the main and hard samples of the eFEDS survey, this paper releases their multi-wavelength properties and redshifts. 
    more » « less
  3. Extragalactic background light (EBL) plays an important role in cosmology since it traces the history of galaxy formation and evolution. Such diffuse radiation from near-UV to far-infrared wavelengths can interact with γ -rays from distant sources such as active galactic nuclei (AGNs), and is responsible for the high-energy absorption observed in their spectra. However, probing the EBL from γ -ray spectra of AGNs is not trivial due to internal processes that can mimic its effect. Such processes are usually taken into account in terms of curvature of the intrinsic spectrum. Hence, an improper choice of parametrization for the latter can seriously affect EBL reconstruction. In this paper, we propose a statistical approach that avoids a priori assumptions on the intrinsic spectral curvature and that, for each source, selects the best-fit model on a solid statistical basis. By combining the Fermi -LAT observations of 490 blazars, we determine the γ -ray-inferred level of EBL for various state-of-the-art EBL models. We discuss the EBL level obtained from the spectra of both BL Lacs and flat spectrum radio quasars (FSRQ) in order to investigate the impact of internal absorption in different classes of objects. We further scrutinize constraints on the EBL evolution from γ -ray observations by reconstructing the EBL level in four redshift ranges, up to z  ∼ 2.5. The approach implemented in this paper, carefully addressing the question of the modeling of the intrinsic emission at the source, can serve as a solid stepping stone for studies of hundreds of high-quality spectra acquired by next-generation γ -ray instruments. 
    more » « less
  4. Abstract The joint detection of gravitational waves and the gamma-ray counterpart of a binary neutron star merger event, GW170817, unambiguously validates the connection between short gamma-ray bursts and compact binary object (CBO) mergers. We focus on a special scenario where short gamma-ray bursts produced by CBO mergers are embedded in disks of active galactic nuclei (AGNs), and we investigate the γ -ray emission produced in the internal dissipation region via synchrotron, synchrotron self-Compton, and external inverse Compton (EIC) processes. In this scenario, isotropic thermal photons from the AGN disks contribute to the EIC component. We show that a low-density cavity can be formed in the migration traps, leading to the embedded mergers producing successful GRB jets. We find that the EIC component would dominate the GeV emission for typical CBO mergers with an isotropic-equivalent luminosity of L j ,iso = 10 48.5 erg s −1 that are located close to the central supermassive black hole. Considering a long-lasting jet of duration T dur ∼ 10 2 –10 3 s, we find that the future Cherenkov Telescope Array (CTA) will be able to detect its 25–100 GeV emission out to a redshift z = 1.0. In the optimistic case, it is possible to detect the on-axis extended emission simultaneously with GWs within one decade using MAGIC, H.E.S.S., VERITAS, CTA, and LHAASO-WCDA. Early diagnosis of prompt emissions with Fermi-GBM and HAWC can provide valuable directional information for the follow-up observations. 
    more » « less
  5. Abstract

    We present a comprehensive optical and near-infrared census of the fields of 90 short gamma-ray bursts (GRBs) discovered in 2005–2021, constituting all short GRBs for which host galaxy associations are feasible (≈60% of the total Swift short GRB population). We contribute 274 new multi-band imaging observations across 58 distinct GRBs and 26 spectra of their host galaxies. Supplemented by literature and archival survey data, the catalog contains 542 photometric and 42 spectroscopic data sets. The photometric catalog reaches 3σdepths of ≳24–27 mag and ≳23–26 mag for the optical and near-infrared bands, respectively. We identify host galaxies for 84 bursts, in which the most robust associations make up 56% (50/90) of events, while only a small fraction, 6.7%, have inconclusive host associations. Based on new spectroscopy, we determine 18 host spectroscopic redshifts with a range ofz≈ 0.15–1.5 and find that ≈23%–41% of Swift short GRBs originate fromz> 1. We also present the galactocentric offset catalog for 84 short GRBs. Taking into account the large range of individual measurement uncertainties, we find a median of projected offset of ≈7.7 kpc, for which the bursts with the most robust associations have a smaller median of ≈4.8 kpc. Our catalog captures more high-redshift and low-luminosity hosts, and more highly offset bursts than previously found, thereby diversifying the population of known short GRB hosts and properties. In terms of locations and host luminosities, the populations of short GRBs with and without detectable extended emission are statistically indistinguishable. This suggests that they arise from the same progenitors, or from multiple progenitors, which form and evolve in similar environments. All of the data products are available on the Broadband Repository for Investigating Gamma-Ray Burst Host Traits website.

     
    more » « less