skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Model Predictive Control-Based Hierarchical Control of a Multi-Zone Commercial HVAC System
Abstract This paper presents a novel architecture for model predictive control (MPC)-based indoor climate control of multi-zone buildings to provide energy efficiency. Unlike prior works, we do not assume the availability of a high-resolution multi-zone building model, which is challenging to obtain. Instead, the architecture uses a low-resolution model of the building that is divided into a small number of “meta-zones” that can be easily identified using existing data-driven modeling techniques. The proposed architecture is hierarchical. At the higher level, an MPC controller uses the low-resolution model to make decisions for the air handling unit (AHU) and the meta-zones. Since the meta-zones are fictitious, a lower level controller converts the high-level MPC decisions into commands for the individual zones by solving a projection problem that strikes a trade-off between two potentially conflicting goals: the AHU-level decisions made by the MPC are respected while the climate of the individual zones is maintained within the comfort bounds. The performance of the proposed controller is assessed via simulations in a high-fidelity simulation testbed and compared to that of a rule-based controller that is used in practice. Simulations in multiple weather conditions show the effectiveness of the proposed controller in terms of energy savings, climate control, and computational tractability.  more » « less
Award ID(s):
1934322
PAR ID:
10280372
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ASME Journal of Engineering for Sustainable Buildings and Cities
Volume:
2
Issue:
2
ISSN:
2642-6641
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract An autonomous adaptive model predictive control (MPC) architecture is presented for control of heating, ventilation, and air condition (HVAC) systems to maintain indoor temperature while reducing energy use. Although equipment use and occupant changes with time, existing MPC methods are not capable of automatically relearning models and computing control decisions reliably for extended periods without intervention from a human expert. We seek to address this weakness. Two major features are embedded in the proposed architecture to enable autonomy: (i) a system identification algorithm from our prior work that periodically re-learns building dynamics and unmeasured internal heat loads from data without requiring re-tuning by experts. The estimated model is guaranteed to be stable and has desirable physical properties irrespective of the data; (ii) an MPC planner with a convex approximation of the original nonconvex problem. The planner uses a descent and convergent method, with the underlying optimization problem being feasible and convex. A yearlong simulation with a realistic plant shows that both of the features of the proposed architecture—periodic model and disturbance update and convexification of the planning problem—are essential to get performance improvement over a commonly used baseline controller. Without these features, long-term energy savings from MPC can be small while with them, the savings from MPC become substantial. 
    more » « less
  2. null (Ed.)
    Model predictive control (MPC) has been widely investigated for climate control of commercial buildings for both energy efficiency and demand flexibility. However, most MPC formulations ignore humidity and latent heat. The inclusion of moisture makes the problem considerably more challenging, primarily since a cooling and dehumidifying coil model which accounts for both sensible and latent heat transfers is needed. In our recent work, we proposed an MPC controller in which humidity and latent heat were incorporated in a principled manner, by using a reduced-order model of the cooling coil. Because of the highly nonlinear nature of the process in a cooling coil, the model needs to be modified based on certain weather/climatic conditions to have sufficient prediction accuracy. Doing so, however, leads to a mixed-integer nonlinear program (MINLP) that is challenging to solve. In this work, we propose an MPC formulation that retains the NLP (nonlinear programming problem) structure in all climate zones/weather conditions. This feature makes the control system capable of autonomous operation. Simulations in multiple climate zones and weather conditions verify the energy savings performance, and autonomy of the proposed controller. We also compare the performance of the proposed MPC controller with an MPC formulation that does not explicitly consider humidity. Under certain conditions, it is found that the MPC controller that excludes humidity leads to poor humidity control, or higher energy usage as it is unaware of the latent load on the cooling coil. 
    more » « less
  3. This work proposes a two-degree of freedom (2DOF) controller for motion tracking of nanopositioning devices, such as piezoelectric actuators (PEAs), with a broad bandwidth and high precision. The proposed 2DOF controller consists of an inversion feedforward controller and a real-time feedback controller. The feedforward controller, a sequence-to-sequence LSTM-based inversion model (invLSTMs2s), is used to compensate for the nonlinearity of the PEA, especially at high frequencies, and is collaboratively integrated with a linear MPC feedback controller, which ensures the PEA position tracking performance at low frequencies. Therefore, the proposed 2DOF controller, namely, invLSTMs2s+MPC, is able to achieve high precision over a broad bandwidth. To validate the proposed controller, the uncertainty of invLSTMs2s is checked such that the integration of an inversion model-based feedforward controller has a positive impact on the trajectory tracking performance compared to feedback control only. Experimental validation on a commercial PEA and comparison with existing approaches demonstrate that high tracking accuracies can be achieved by invLSTMs2s+MPC for various reference trajectories. Moreover, invLSTMs2s+MPC is further demonstrated on a multi-dimensional PEA platform for simultaneous multi-direction positioning control.

     
    more » « less
  4. We consider the problem of optimal control of district cooling energy plants (DCEPs) consisting of multiple chillers, a cooling tower, and a thermal energy storage (TES), in the presence of time-varying electricity price. A straightforward application of model predictive control (MPC) requires solving a challenging mixed-integer nonlinear program (MINLP) because of the on/off of chillers and the complexity of the DCEP model. Reinforcement learning (RL) is an attractive alternative since its real-time control computation is much simpler. But designing an RL controller is challenging due to myriad design choices and computationally intensive training. In this paper, we propose an RL controller and an MPC controller for minimizing the electricity cost of a DCEP and compare them via simulations. The two controllers are designed to be comparable in terms of objective and information requirements. The RL controller uses a novel Q-learning algorithm that is based on least-squares policy iteration. We describe the design choices for the RL controller, including the choice of state space and basis functions, that are found to be effective. The proposed MPC controller does not need a mixed integer solver for implementation, but only a nonlinear program (NLP) solver. A rule-based baseline controller is also proposed to aid in comparison. Simulation results show that the proposed RL and MPC controllers achieve similar savings over the baseline controller, about 17%. 
    more » « less
  5. The hybrid nature of multi-contact robotic systems, due to making and breaking contact with the environment, creates significant challenges for high-quality control. Existing model-based methods typically rely on either good prior knowledge of the multi-contact model or require significant offline model tuning effort, thus resulting in low adaptability and robustness. In this paper, we propose a realtime adaptive multi-contact model predictive control framework, which enables online adaption of the hybrid multi-contact model and continuous improvement of the control performance for contact-rich tasks. This framework includes an adaption module, which continuously learns a residual of the hybrid model to minimize the gap between the prior model and reality, and a real-time multi-contact MPC controller. We demonstrated the effectiveness of the framework in synthetic examples, and applied it on hardware to solve contact-rich manipulation tasks, where a robot uses its end-effector to roll different unknown objects on a table to track given paths. The hardware experiments show that with a rough prior model, the multi-contact MPC controller adapts itself on-the-fly with an adaption rate around 20 Hz and successfully manipulates previously unknown objects with non-smooth surface geometries. Accompanying media can be found at: https://sites.google.com/view/adaptive-contact-implicit-mpc/home 
    more » « less